The putative atypical antipsychotic drug amperozide (APZ) shows high affinity for serotonin 5-HT2 receptors but only low affinity for dopamine (DA) D2 receptors. By employing microdialysis, we examined the effects of APZ on extracellular concentrations of DA in the nucleus accumbens (NAC), the dorsolateral striatum (STR) and the medial prefrontal cortex (MPC) of awake rats. A 5.0 mg/kg (SC) dose of APZ failed to affect DA concentrations in the NAC, while it increased DA outflow in the STR (by 46%) and the MPC (by 207%). A higher dose of APZ (10 mg/kg, SC) enhanced dialysate DA from the NAC and the STR by 30%, and from the MPC by 326%. Similarly, clozapine (2.5 and 10 mg/kg, SC) produced a greater release of DA in the MPC (+ 127 and + 279%) than in the NAC (+ 52 and + 98%). The selective 5-HT2 receptor antagonist ritanserin (1.5 and 3.0 mg/kg, SC) also produced a slightly higher increase of DA output in the MPC (+ 25 and + 47%) compared with the NAC (+ 19 and + 21%). In contrast, the selective D2 receptor antagonist raclopride (0.5 and 2.0 mg/kg, SC) increased DA release in the NAC (+ 65 and + 119%) to a greater extent than in the MPC (+ 45 and + 67%). These data suggest that the 5-HT2 receptor antagonistic properties of APZ and clozapine may contribute to their preferential effects on DA transmission in the MPC. Infusion of low doses (1, 10 microM, 40 min) of APZ through the probe in the DA terminal areas did not affect significantly DA outflow, while infusion of high doses (100, 1000 microM, 40 min) resulted in a more pronounced elevation of DA levels in the NAC (up to 961%) and the STR (up to 950%) than in the MPC (up to 316%). These findings indicate that the selective action of systemically administered APZ on DA in the MPC is most likely mediated at a level other than the terminal region. Taken together, the present results provide support for the notion that 5-HT2 receptor antagonism may be of considerable significance for the action of atypical antipsychotic drugs on mesolimbocortical dopaminergic neurotransmission.
The antipsychotic drug risperidone shows high affinity for both central serotonin (5-HT)2A and dopamine (DA)-D2 receptors in vivo. By employing microdialysis in freely moving rats, the effects of acute risperidone administration on regional brain DA and 5-HT release and metabolism were compared with the corresponding effects of the atypical antipsychotic drug clozapine as well as amperozide, the selective DA-D2 receptor antagonist raclopride and the selective 5-HT2A/5-HT2C receptor antagonist ritanserin. Risperidone (0.2 or 2.0 mg/kg, SC) was found to increase DA release and metabolism to about the same extent in three major projection areas of the mesotelencephalic dopaminergic system, i.e. the nucleus accumbens (NAC), the medial prefrontal cortex (MPC) and the lateral striatum (STR). In contrast, clozapine and amperozide (both 10.0 mg/kg, SC), as well as raclopride (2.0 mg/kg, SC), were all found differentially to affect DA release and metabolism in the three projections areas. Specifically, clozapine and amperozide enhanced DA release in the MPC to a greater extent than in the NAC or the STR, whereas raclopride instead preferentially increased DA release in the NAC and the STR but not in the MPC. Ritanserin (3.0 mg/kg, SC) did not exert any major effects on DA metabolism in the three areas studied. In contrast to the regionally rather homogenous activation of brain DA systems caused by risperidone, the drug was found to enhance brain 5-HT metabolism preferentially in the MPC, as indicated by the elevated extracellular concentration of 5-hydroxyindoleacetic acid (5-HIAA) in this region. A similar elevation of the 5-HIAA level in the MPC was observed after amperozide and, to some extent, after clozapine and ritanserin administration. The risperidone-induced (2.0 mg/kg, SC) elevation of 5-HIAA concentrations in the frontal cortex was found to be paralleled by an increased 5-HT release in this brain area. Consequently, our findings demonstrate a pharmacological profile of risperidone, as reflected in brain DA metabolism, in between that of clozapine and the DA-D2 antagonists. The preferential activation of 5-HT release and metabolism in frontal cortical areas might be of particular relevance for the ameliorating effect of risperidone on negative symptoms in schizophrenia, especially when associated with depression.
In vivo microdialysis was used to investigate the effects of acute injections of harmine on extracellular concentrations of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxindoleacetic acid (5-HIAA) in the striatum of awake rats. Administration of harmine in doses of 0.5, 2.5, and 10 mg/kg (i.p.) elicited a dose-dependent increase of the dopamine efflux to 152, 173, and 243% and a decrease in DOPAC to 52, 36, and 10%, and HVA to 67, 45, and 20% throughout, respectively; 5-HIAA concentrations were decreased to 81, 74, and 72% only. In contrast to D-amphetamine, which also increases dopamine release and decreases its metabolites, the stimulatory action of harmine on dopamine release in the striatum was totally abolished in the presence of tetrodotoxin (1 microM). Similar to monoamine oxidase (MAO)-A inhibitors, harmine potentiated the stimulatory effect of D-amphetamine (10 microM), infused by reverse microdialysis in the striatum, on dopamine release. Pre-treatment with the benzodiazepine receptor antagonist flumazenil (5 mg/kg, i.p.) did not modulate the effect of harmine on striatal dopamine release and metabolism. Administration of the reversible MAO-A inhibitor, moclobemide (20 mg/kg, i.p.), induced an increase in dopamine to 256% and a decrease in DOPAC, HVA, and 5-HIAA to 30, 24, and 62%, respectively, reproducing a pattern similar to that of harmine. Taken together, these results indicate that harmine affects the brain dopamine system probably by acting as a MAO-A inhibitor and not as an inverse agonist for the benzodiazepine receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.