The cell wall of the biflagellated alga Chlamydomonas reinhardtii is a multilayered, extracellular matrix composed of carbohydrates and 20-25 polypeptides. To learn more about the forces responsible for the integrity of this cellulose-deficient cell wall, we have begun studies to identify and characterize the framework of the wall and to determine the effects of the cell wall-degrading enzyme, lysin, on framework structure and protein composition. In these studies we used walls released into the medium by mating gametes. When isolated shed walls are degraded by exogenously added lysin, no changes are detected in the charge or molecular weight of the 20-25 wall proteins and glycoproteins when analyzed on one-and two-dimensional polyacrylamide gels, which suggests that degradation of these shed walls is due either to cleavage of peptide bonds very near the ends of polypeptides or that degradation occurs via a mechanism other than proteolysis. Incubation of walls with Sarkosyl-urea solutions removes most of the proteins and yields thin structures that appear to be the frameworks of the walls. Analysis by polyacrylamide gel electrophoresis shows that the frameworks are highly enriched in a polypeptide of Mr 100,000. Treatment of frameworks with lysin leads to their degradation, which indicates that this part of the wall is a substrate for the enzyme. Although lysin converts the Mr 100,000 polypeptide from an insoluble to a soluble form, there is no detectable change in Mr of the framework protein. Solubilization in the absence of lysin requires treatment with SDS and dithiothreitol at 100°C.These results suggest that the Chlamydomonas cell wall is composed of two separate domains: one containing ~20 proteins held together by noncovalent interactions and a second domain, containing only a few proteins, which constitutes the framework of the wall. The result that shed walls can be solubilized by boiling in SDS-dithiothreitol indicates that disulfide linkages are critical for wall integrity. Using an alternative method for isolating walls from mechanically disrupted gametes, we have also shown that a wall-shaped portion of these nonshed walls is insoluble under the same conditions in which shed walls are soluble. One interpretation of these results is that wall release during mating and the wall degradation that follows may involve distinct biochemical events.The cell wall of the biflagellated alga Chlamydomonas reinhardtii provides structural support for the cell and may regulate movement of molecules into and out of the cell. This complex extracellular matrix is composed of carbohydrates and several hydroxyproline-rich proteins arranged into at least seven distinct layers visible in the electron microscope with the outer layers forming a crystalline lattice (3,4,15,17,18). It is not clear whether all of the wall carbohydrate is in glycoproteins, but, unlike the cell walls of higher plants, the Chlamydomonas wall contains no cellulose (8,17). This observation raises the question as to what provides the under-
A flagellar adhesion-induced signal sent during the mating reaction of the biflagellate alga, Chlamydomonas reinhardtii, initiates release of cell-wall-degrading enzymes, activation of mating structures, and cell fusion. The nature of this signal is unknown, but it may be mediated by an adhesion-induced change (activation) of flagellar tips. The studies reported here show that lidocaine, a local anesthetic that is reported to interfere with the movement of divalent cations across cell membranes, reversibly blocks cell wall loss and gametic fusion without blocking adhesion or flagellar tip activation. In these experiments lidocaine inhibited both the initial rates and the extent of wall loss and zygote formation. Studies with gametes of a paralyzed flagellar mutant, pf 17, revealed that lidocaine also blocked flagellar surface motility (visualized as movement of polystyrene beads) at concentrations of the inhibitor which also prevented gametic fusion. The concentration of lidocaine required to block cell fusion was dependent on the concentration of calcium or magnesium in the medium. In the absence of added calcium, 0.5 mM lidocaine inhibited fusion by 70%. In 0.5 mM calcium, 0.5 mM lidocaine had no effect on fusion and 2 mM lidocaine was required for 90% inhibition. The results suggest that divalent cations may play a critical role in sexual signalling in Chlamydomonas.
Abstract. During the mating reaction in Chlamydomonas reinhardtii mating type plus and mating type minus gametes adhere to each other via adhesion molecules on their flagellar surfaces. This adhesive interaction induces a sexual signal leading to release of a cell wall degrading enzyme, lysin, that causes wall release and degradation. In this article, we describe the preparation of a polyclonal antibody against the 60,000-M~ lysin polypeptide excised from SDS-PAGE gels. After absorption of the IgG with cell walls to remove antibodies against a carbohydrate epitope common to several Chlamydomonas glycoproteins, the immune IgG reacted with the 60,000-M, polypeptide, and a 47,000-Mr species that we show here was immunologically cross-reactive with the 60,000-Mr molecule. By use of several fractionation methods including ion exchange and molecular seive chromatography, sucrose gradient centrifugation, and affinity chromatography, we showed that the 60,000-/14, antigen copurified with lysin activity, thereby demonstrating that the antibody was indeed directed against the enzyme.Immunoblot experiments on suspensions of nonmating and mating gametes showed that the 60,000-Mr antigen was missing in the nonmating gametes. Instead, they contained a 62,000-Mr antigen that was not present in suspensions of mating gametes that had undergone sexual signalling. Furthermore, nonmating gametes whose walls were removed with exogenously added lysin did not contain either form of the antigen. We also found that the 62,000-M, form of the antigen, which could be released from gametes by freezethawing, did not have wall degrading activity. These results indicate that lysin in gametes is stored in the periplasm as a higher relative molecular mass, inactive precursor and also that sexual signalling induces conversion of this molecule to a lower relative molecular mass, active enzyme. This may be a novel example of processing of an extracellular protease induced by cell contact.
Abstract. During fertilization in the biflagellated alga, Chlamydomonas reinhardtii, gametes of opposite mating types adhere to each other via agglutinin molecules located on their flagellar surfaces, generating a sexual signal that induces several cellular responses including cell wall release. This cell contact-generated signal is mediated by cAMP and release of the wall, which is devoid of cellulose and contains several hydroxyproline-rich glycoproteins, is due to the activation of a metalloprotease, lysin. Although we originally assumed that lysin would be stored intracellulady in a compartment structurally separate from its substrate, recently we showed that lysin is stored in the periplasm as an inactive, higher relative molecular mass precursor, prolysin (Buchanan, M. J., S. H.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.