The association of hepatocyte growth factor (HGF) with its high-affinity receptor, c-met, has been shown to induce mitogenesis, motogenesis, and morphogenesis in renal epithelial cells (L. G. Cantley, E. J. G. Barros, M. Gandhi, M. Rauchman, and S. K. Nigam. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36): F271-F280, 1994), suggesting that HGF may be critical to the orchestration of both renal development and regeneration following injury. Although signal transduction pathways activated by c-met include the phosphatidylinositol 3-kinase (PI-3-kinase), phospholipase C gamma, ras, and others, the activation of PI-3-kinase has been the most striking in vivo. We therefore investigated whether the pathways that mediate phenotypic changes in inner medullary collecting duct cells are altered by inhibition of PI-3-kinase with the fungal metabolite, wortmannin. In these cells, the mean inhibitory concentration for in vitro wortmannin inhibition of PI-3-kinase was approximately 0.2 nM. At this low concentration, motogenesis (quantified by chemotaxis) and morphogenesis (by branching-process formation within collagen matrix) were inhibited in a striking and parallel fashion, while mitogenesis was inhibited to a lesser degree. These experiments suggest that activation of PI-3-kinase is critical for c-met-mediated chemotaxis and tubulogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.