Both in land evaluation and in water management quantitative methods, GIS and simulation modelling are well-known techniques for quantifying the effects of changes, such as land use or climate change.For hydrological management decisions information is often required on the effect of those decisions on agricultural production. To serve the needs of different types of users, like water authorities, provinces, drinking water companies and the National Department of Infrastructure and Water Management we developed a toolbox named WaterVision Agriculture as an instrument that can determine effects on crop yield and the farm economy as a result of drought, too wet or too saline conditions for both current and future climatic conditions. WaterVision Agriculture is based on the hydrological simulation model SWAP, the crop growth model WOFOST and farm management and economic assessments such as DairyWise for dairy farming. The WaterVision Agriculture (WVA) project resulted in two products, namely i) an easily applicable tool (also called the WVA-table) and ii) the operational models for hydrology and crop growth SWAP and WOFOST for calculating effects on field scale combined with calculating farm economic results and indirect effects. SWAP simulates water transport in the unsaturated zone using meteorological data, boundary conditions (like groundwater level or drainage) and soil parameters. WOFOST simulates crop growth as a function of meteorological conditions and crop parameters. Using the combination of these process-based models and methods for describing crop management and economic value we derived a meta-model, i.e. a set of easily applicable simplified relations for assessing crop growth as a function of 3 soil type and groundwater level. These relations are based on multiple model runs for at least 72 soil units and the possible groundwater regimes in the Netherlands. The easily applicable tool (WVA-table) uses this meta-model.Applying the meta-model of WaterVision Agriculture should allow for better decisions on land use or soil and water management because the instrument can help to quantify the effects of changes in climate, land use, hydrological conditions or combinations of these effects on agricultural production.
Abstract. For calculating the effects of hydrological measures on agricultural production in the Netherlands a new comprehensive and climate proof method is being developed: WaterVision Agriculture (in Dutch: Waterwijzer Landbouw). End users have asked for a method that considers current and future climate, that can quantify the differences between years and also the effects of extreme weather events. Furthermore they would like a method that considers current farm management and that can distinguish three different causes of crop yield reduction: drought, saline conditions or too wet conditions causing oxygen shortage in the root zone. WaterVision Agriculture is based on the hydrological simulation model SWAP and the crop growth model WOFOST. SWAP simulates water transport in the unsaturated zone using meteorological data, boundary conditions (like groundwater level or drainage) and soil parameters. WOFOST simulates crop growth as a function of meteorological conditions and crop parameters. Using the combination of these process-based models we have derived a meta-model, i.e. a set of easily applicable simplified relations for assessing crop growth as a function of soil type and groundwater level. These relations are based on multiple model runs for at least 72 soil units and the possible groundwater regimes in the Netherlands. So far, we parameterized the model for the crops silage maize and grassland. For the assessment, the soil characteristics (soil water retention and hydraulic conductivity) are very important input parameters for all soil layers of these 72 soil units. These 72 soil units cover all soils in the Netherlands. This paper describes (i) the setup and examples of application of the process-based model SWAP-WOFOST, (ii) the development of the simplified relations based on this model and (iii) how WaterVision Agriculture can be used by farmers, regional government, water boards and others to assess crop yield reduction as a function of groundwater characteristics or as a function of the salt concentration in the root zone for the various soil types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.