The current work investigates experimental characteristics of the Photovoltaic Thermal system integrated with CuO-Water spiral flow heat exchanger and compared with non-cooled PV module. The work describes detailed procedure of Nanoparticles (NPs) preparation, SEM characterizations and heat extraction characteristics of Nanofluid (NFs) in PVT application. The heat exchanger was pasted at the back of polycrystalline PV module to form PVT system to examine cooling ability, power generation, thermal-electrical yield and overall efficiency at a different volume concentration of CuO NPs at steady mass flow rate of 0.08 kg/sec. From the experiments, it was concluded that the CuO-Water NFs assisted to lessen surface temperature of PV module by extracting heat that enhanced electrical efficiency by an average of 3.53%. It was also seen that electrical and thermal performance was improved at higher volume concentration and overall efficiency of 30.77% and 36.59 % were obtained at 0.01% and 0.03% of volume concentration.
The primary objective of the existing work is to evaluate hot gas welding technique for PP composite material and carrying out analysis over the critical parameters (air flow rate, temperature, weld time) to determine material weld strength in tensile conditions. Polypropylene blend with elastomer have wide application in engineering areas due to their desired properties but due to these changed properties over existing one recycling get affected and became difficult so their reparability should be considered. Hot gas welding helps to join the cracks and restore defects in it. Extracting the optimized values from critical parameters will help to make the method more efficient and effective. Tensile probing carried over specimen by considering ASTM standards assist to know former and later tensile conditions of welded joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.