In this paper, a novel method for calculating degradation kinetics is presented. The method has been applied to the thermal dehydrochlorination of two different samples of PVC. It has been observed that this dehydrochlorination is complex and involves two different processes. A model that accounts for the entire dehydrochlorination is proposed. This model involves nucleation and growth and diffusion controlled mechanisms. The kinetic parameters are obtained from linear heating rate, isothermal and sample controlled thermal analysis experiments. Kinetic results obtained from the macroscopic thermal analysis measurements demonstrate the correlation between the kinetics of the thermal dehydrochlorination of PVC and the structure of this macromolecule.
In this work, a mechanochemical procedure is proposed as a simple and fast method to synthesize the pure BiFeO 3 perovskite phase as a nanostructured material without the need for purification treatments, while the mechanochemical reaction mechanism has been investigated and correlated with that of the conventional solid-state reaction. Thus, different milling conditions have been used as a tool for tailoring the crystallite size of the resulting BiFeO 3 nanoparticles. The materials prepared by the mechanochemical reaction could be annealed or sintered without the formation of undesirable phases.Both the ferroelectric and ferromagnetic transitions were observed by DSC. Finally, the dielectric constants of the prepared material at different frequencies as a function of the temperature have been measured, showing that the material is clearly an isolator below 200 C, characteristic of a high quality BiFeO 3 material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.