In this paper we present an experimental study of the stabilization of gas-fluidized beds of magnetic powders by application of a cross-flow magnetic field. The powders tested consist of magnetite and steel powders in a range of particle size d p between 35 and 110 µm, allowing us to investigate the effect of particle size and material properties on magnetic stabilization. In the operation mode employed by us the magnetic field is applied to the unstable bubbling bed and the gas velocity is slowly decreased. According to our observations, the bed is stabilized at a critical gas velocity by the jamming of particle chains formed during bubbling because of the attractive forces induced between the magnetized particles, which are thus responsible for stabilization. Although the magnetic field is applied in the horizontal direction, these chains are mechanically stable at orientations close to the gas flow direction, in agreement with the prediction of an unconfined chain model based on the balance between gas flow shear and interparticle magnetic force f m . Since f m is increased as d p is increased, the critical gas velocity at marginal stability v c for a fixed field strength B is seen to increase with d p . As the gas velocity v 0 is decreased below v c , there is a rearrangement of the structure depending on particle size. Restructuring of the bed depends on particle size as derived from measurements of its permeability to the gas flow, which causes the yield stress to be a function of particle size. It is also inferred from our results that natural agglomeration of fine particles (in the absence of a magnetic field) due to van der Waals forces enhances the yield stress of the magnetically stabilized bed. From our experimental results it is concluded that structural effects, as affected by operating conditions and material properties, play a main role in the rheology of the stabilized magnetofluidized bed (MFB).
The behavior of a fluidized bed of fine magnetite particles as affected by a cross-flow magnetic field is investigated. A distinct feature of this naturally cohesive powder, as compared to noncohesive magnetic grains usually employed in magnetofluidized beds, is that the fluidized bed displays a range of stable fluidization even in the absence of an external magnetic field. Upon application of the magnetic field, the interval of stable fluidization is extended to higher gas velocities and bed expansion is enhanced. We have measured the tensile strength as affected by application of the external magnetic field according to two different operation modes.In the H off-on operation mode, the bed is driven to bubbling in the absence of external magnetic field. Once the gas velocity is decreased below the bubbling onset and the bed has returned to stable fluidization due to natural cohesive forces, the field is applied. In the H on-on mode, the field is maintained during the whole process of bubbling and return to stable fluidization. It is found that the tensile strength of the naturally stabilized bed is not essentially changed by application of the field ͑H off-on͒ since the magnetic field cannot alter the bed structure once the particles are jammed in the stable fluidization state. Magnetic forces within the bulk of the jammed bed are partially canceled as a result of the anisotropic nature of the dipole-dipole interaction between the particles, which gives rise to just a small increment of the tensile strength. On the other hand, when the field is held on during bubbling and transition to stable fluidization ͑H on-on mode͒, the tensile strength is appreciably increased. This suggests the formation of particle chains when the particles are not constrained due to the dipole-dipole attractive interaction which affects the mechanical strength of the stably fluidized bed. Experimental data are analyzed in the light of theoretical models on magnetic surface stresses.
We analyze in this contribution the effect of aging on the electrokinetic properties of magnetite (Fe 3 O 4 ) and hematite (α-Fe 2 O 3 ). In both cases, high-purity commercial samples and monodisperse synthetic particles were studied. Commercial magnetite showed a rather erratic dependence of its electrophoretic mobility u e with the concentration of NaCl. Furthermore, sufficient concentrations of the latter were able to change the sign of the mobility. When KNO 3 solutions were used, although no such change was observed, no clear effect of [KNO 3 ] on the mobility was found, and, in addition, an intense aging effect was detected, as the mobility became increasingly positive in suspensions that were stored over 1 day. The picture was radically different with synthetic magnetite spheres, as the expected overall decrease of u e with either NaCl or KNO 3 concentration was measured. However, also in this case the aging effect was clearly observed: u e tended in this case to more negative values upon suspension storage, and a steady value of the mobility was reached only after 5 days in NaCl (and even longer in KNO 3 solutions). Because of the crystal structure similarities between magnetite and maghemite (γ -Fe 2 O 3 ), it has been shown that the final step of magnetite oxidation is maghemite. This is confirmed in the present study, as the mobility-pH trends of magnetite progressively approach those of maghemite after about 7 days of storage. Since hematite is chemically more stable than magnetite, our study focused in this case on the comparison between commercial and synthetic particles. The former showed a negative mobility at pH 5.5 under all conditions, suggesting an isoelectric point well below the value accepted for hematite (≥7). The effect of aging on commercial samples was again very significant, as u e decreased in absolute value, apparently without limit as the time since preparation was longer. In contrast, synthetic hematite showed a more predictable dependence on ionic strength, and more limited aging effects, as u e reached equilibrium values after around 5 days in NaCl; longer times were required in KNO 3 solutions. C 2002 Elsevier Science
A modified CO(2) adsorbent is obtained by dry mixing of a Ca(OH)(2) fine powder as received with a commercial silica nanopowder. Silica nanoparticles form light agglomerates of size of the order of tens of microns, which are uniformly fluidizable. These agglomerates act as dispersants of the Ca(OH)(2) fine particles, which coat the nanoparticle agglomerates likely due to contact charging. Ca(OH)(2) particles (CO(2) adsorbent) are thus provided with a vehicle for uniform fluidization. In this way, the contact efficiency between the CO(2) adsorbent and CO(2) in the fluidized bed is greatly enhanced. Experimental results show that the improvement of Ca(OH)(2) fluidizability serves to enhance the carbonation reaction in the fluidized bed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.