Excess rumen-soluble Cu and Zn can alter rumen microbial populations and reduce fiber digestibility. Because of differences in particle size and chemical composition, ruminal and total-tract digestibility of fiber from forage- and by-product-based diets can differ. We hypothesized that, because of differences in mineral solubility, diets with hydroxy rather than sulfate trace minerals would have greater fiber digestibility, but the effect may depend on source of fiber. Eighteen multiparous cows were used in a split-plot replicated Latin square with two 28-d periods to evaluate the effects of Cu, Zn, and Mn source (sulfates or hydroxy; Micronutrients USA LLC, Indianapolis, IN) and neutral detergent fiber (NDF) source (forage diet = 26% NDF vs. by-product = 36%) on total-tract nutrient digestibility. During the entire experiment (56 d) cows remained on the same fiber treatment, but source of supplemental trace mineral was different for each 28-d period so that all cows were exposed to both mineral treatments. During each of the two 28-d periods, cows were fed no supplemental Cu, Zn, or Mn for 16 d followed by 12 d of feeding supplemental Cu, Zn, and Mn from either sulfates or hydroxy sources. Supplemental minerals for each of the mineral sources fed provided approximately 10, 35, and 32 mg/kg of supplemental Cu, Zn, and Mn, respectively, for both fiber treatments. Total dietary concentrations of Cu, Zn, and Mn were approximately 19, 65, and 70 mg/kg for the forage diets and 21, 85, and 79 mg/kg for the by-product diets, respectively. Treatment had no effect on dry matter intake (24.2 kg/d) or milk production (34.9 kg/d). Milk fatty acid profiles were altered by fiber source, mineral source, and their interaction. Cows fed the by-product diets had lower dry matter (65.9 vs. 70.2%), organic matter (67.4 vs. 71.7%), and crude protein digestibility (58.8 vs. 62.1%) but greater starch (97.5 vs. 96.3%) and NDF digestibility (50.5 vs. 44.4%) compared with cows fed the forage treatment. Feeding increased concentrations of by-products decreased total digestible nutrients regardless of mineral source. Feeding hydroxy Cu, Zn, and Mn increased NDF digestibility (48.5 vs. 46.4%) but had no effect on total digestible nutrients.
Appropriate trace mineral supplementation can improve immune response and hoof health in cattle and at much higher rates of supplementation to swine and poultry can alter microbial colonization of the gut, resulting in improved gut health. Diet can influence fecal microbial excretion in cattle, and the fecal microbiome may serve as a means for assessing gastrointestinal microbial changes. We hypothesized that feeding diets that differed in source of supplemental Cu, Zn, or Mn would alter the relative abundance of fecal microbes in lactating dairy cattle and that organic Zn would have the greatest effect. Twenty-four cows were fed diets devoid of supplemental Cu, Zn, and Mn for a 16-d preliminary phase (basal diet provided 9, 29, and 32 mg/kg of Cu, Zn, and Mn, respectively), and then were randomly assigned to 1 of 3 treatment diets (n = 8 cows/treatment): one group of cows was fed supplemental Cu, Zn, and Mn from sulfate minerals; the second group was fed glycinate minerals; and the third group was fed Cu and Mn sulfate with glycinate Zn. Assayed total dietary concentrations were approximately 21, 73, and 72 mg/kg for Cu, Zn, and Mn, respectively. Milk production (averaged 38.8 kg/d), DMI (averaged 25.8 kg/d), and milk components were not affected by treatment. Fecal DNA was extracted, amplified using a universal primer targeting the V4-V5 hypervariable region of the 16S rRNA gene, and sequenced to compare microbial community composition between treatments. Relative abundances of Treponema species-level operational taxonomic units (OTU) were less for animals fed Cu and Mn sulfate with glycinate Zn compared with sulfates alone, but were similar to animals fed glycinate mineral sources. Relative abundances for exclusive glycinate mineral and sulfate mineral treatments were similar. Treponema OTU and cultured representatives are often associated with bovine digital dermatitis. These data may provide an additional link between organic Zn supplementation and improved hoof health. To our knowledge this is the first report of a dietary treatment decreasing the relative abundance of Treponema OTU in cattle feces; however, the potential benefits of this response on overall animal health and the mechanism for the observed responses are unknown and warrant further investigation.
Eighteen multiparous cows were used in a split-plot replicated Latin square with two 28-d periods to evaluate the effects of source of supplemental Cu, Zn, and Mn (sulfates or hydroxy) on apparent absorption of minerals when fed in either a forage- or by-product-based diet. The by-product diets were formulated to have greater concentrations of NDF and lesser concentrations of starch, and specific ingredients were chosen because they were good sources of soluble fiber and β-glucans, which bind trace minerals in nonruminants. We hypothesized that hydroxy trace minerals would interact less with digesta and have greater apparent absorption compared with sulfate minerals, and the difference in apparent absorption would be greater for the by-product diet compared with the forage-based diet. During the 56-d experiment, cows remained on the same fiber treatment but source of supplemental trace mineral was different for each 28-d period; thus, all cows were exposed to both mineral treatments. During each period cows were fed no supplemental Cu, Zn, or Mn for 16 d, followed by 12 d of feeding supplemental minerals from either sulfate or hydroxy sources. Supplemental minerals for each of the mineral sources fed provided approximately 10, 35, and 32 mg/kg of supplemental Cu, Zn, and Mn, respectively, for both fiber treatments. Total Cu, Zn, and Mn dietary concentrations, respectively, were approximately 19, 65, and 70 mg/kg for the forage diets and 21, 85, and 79 for the by-product diets. Treatment had no effect on dry matter intake (24.2 kg/d) or milk production (34.9 kg/d). Cows consuming the by-product diets had greater Zn (1,863 vs. 1,453 mg/d) and Mn (1,790 vs. 1,588 mg/d) intake compared with cows fed forage diets, but apparent Zn absorption was similar between treatments. Manganese apparent absorption was greater for the by-product diets compared with the forage diets (16 vs. 11%). A fiber by mineral interaction was observed for Cu apparent absorption, as cows fed hydroxy minerals with forage diets had greater apparent absorption compared with cows fed sulfate minerals; however, the opposite was observed with the by-product diets. Source of supplemental trace minerals and type of fiber in diets affected availability of Cu and Mn and should be considered in ration formulation.
Many nutrition models rely on summative equations to estimate feed and diet energy concentrations. These models partition feed into nutrient fractions and multiply the fractions by their estimated true digestibility, and the digestible mass provided by each fraction is then summed and converted to an energy value. Nonfiber carbohydrate (NFC) is used in many models. Although it behaves as a nutritionally uniform fraction, it is a heterogeneous mixture of components. To reduce the heterogeneity, we partitioned NFC into starch and residual organic matter (ROM), which is calculated as 100 - CP - LCFA - ash - starch - NDF, where crude protein (CP), long-chain fatty acids (LCFA), ash, starch, and neutral detergent fiber (NDF) are a percentage of DM. However, the true digestibility of ROM is unknown, and because NDF is contaminated with both ash and CP, those components are subtracted twice. The effect of ash and CP contamination of NDF on in vivo digestibility of NDF and ROM was evaluated using data from 2 total-collection digestibility experiments using lactating dairy cows. Digestibility of NDF was greater when it was corrected for ash and CP than without correction. Conversely, ROM apparent digestibility decreased when NDF was corrected for contamination. Although correcting for contamination statistically increased NDF digestibility, the effect was small; the average increase was 3.4%. The decrease in ROM digestibility was 7.4%. True digestibility of ROM is needed to incorporate ROM into summative equations. Data from multiple digestibility experiments (38 diets) using dairy cows were collated, and ROM concentrations were regressed on concentration of digestible ROM (ROM was calculated without adjusting for ash and CP contamination). The estimated true digestibility coefficient of ROM was 0.96 (SE = 0.021), and metabolic fecal ROM was 3.43 g/100 g of dry matter intake (SE = 0.30). Using a smaller data set (7 diets), estimated true digestibility of ROM when calculated using NDF corrected for ash and CP contamination was 0.87 (SE = 0.025), and metabolic fecal ROM was 3.76 g/100 g (SE = 0.60). Regardless of NDF method, ROM exhibited nutritional uniformity. The ROM fraction also had lower errors associated with the estimated true digestibility and its metabolic fecal fraction than did NFC. Therefore, ROM may result in more accurate estimates of available energy if integrated into models.
The effects of supplementing diets with sulfate or glycinate Cu, Zn, and Mn on blood neutrophil function were examined in 27 late-lactation Holstein cows having a mean (± standard deviation) days in milk at time of neutrophil assays of 216 ± 31 d. Cows were assigned to 9 blocks of 3 and were grouped by parity, milk production, and days in milk. Cows within each block were randomly assigned to 1 of 3 treatments: (1) control diet devoid of supplemental Cu, Zn, and Mn; (2) diet supplemented with Cu, Zn, and Mn via sulfates; and (3) diet supplemented with Cu, Zn, and Mn via glycinate form. All cows were initially fed a control total mixed ration with basal mineral concentrations of 8 mg/kg of Cu, 35 mg/kg of Zn, and 35 mg/kg of Mn for 30 d. During the treatment period, cows fed diets with mineral supplementation via sulfates or glycinate forms had target total dry matter dietary concentrations of 18 mg/kg of Cu, 60 mg/kg of Zn, and 60 mg/kg of Mn for 30 d. Control cows were fed the control diet devoid of supplemental minerals for an additional 30 d. In vitro neutrophil functions were measured after 30 d on experimental or control diets. Percentage of neutrophils phagocytizing, intracellular kill, and phagocytic index did not differ among treatments. Serum concentrations of Cu, Zn, and Mn were also not affected by dietary treatment after 30 d. Results from this study demonstrated that dietary Cu, Zn, and Mn supplemented either as sulfates or glycinate form for 30 d had no effect on either in vitro blood neutrophil function or serum concentrations of Cu, Zn, and Mn in late-lactation Holstein cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.