The Izu-Bonin-Mariana (IBM) arc system extends 2800km from near Tokyo, Japan to Guam and is an outstanding example of an intra-oceanic convergent margin (IOCM). Inputs from sub-arc crust are minimized at IOCMs and mantle-to-crust fluxes can be more confidently assessed than for arcs built on continental crust. The history of the IBM IOCM since subduction began about 43 Ma may be better understood than for any other convergent margin. IBM subducts the oldest seafloor on the planet and is under strong extension. The stratigraphy of the western Pacific plate being subducted beneath IBM varies simply parallel to the arc, with abundant off-ridge volcanics and volcaniclastics in the south that diminish to the north, and this seafloor is completely subducted. The Wadati-Benioff Zone varies simply along strike, from dipping gently and failing to penetrate the 660 km discontinuity in the north to plunging vertically in the south into the deep mantle. The northern IBM arc is about 22km thick, with a felsic middle crust; this middle crust is exposed in the collision zone at the northern end of the IBM IOCM. There are four Subduction Factory outputs across the IBM IOCM: serpentinite mud volcanoes in the forearc, and as lavas erupted from along the volcanic front of the arc and back-arc basin and from arc cross-chains. This contribution summarizes our present understanding of matter fed into and produced by the IBM Subduction Factory, with the intention of motivating scientific efforts to understand this outstanding example of one of earth's most dynamic, mysterious, and important geosystems.
Abstract. In this study we investigated the origin of seismic anisotropy in the mantle beneath North America. In particular, we evaluated whether shear wave splitting patterns in eastern North America are better explained by anisotropy caused by lithospheric deformation, anisotropy due to mantle flow beneath the lithosphere, or a combination of both. We examined new measurements of shear wave splitting from the Missouri to Massachusetts broadband seismometer array (MOMA), the North American Mantle Anisotropy and Discontinuity experiment (NOMAD), as well as splitting parameters from several previous studies. We developed a simple finite difference model that approximates mantle flow around a complex, three-dimensional continental lithospheric keel. To evaluate potential anisotropy from mantle flow beneath the lithosphere in eastern North America, we compared shear wave splitting observations to predicted splitting parameters calculated using this mantle flow model. Our results indicate that a significant portion of observed shear wave splitting in eastern North America can be explained by mantle flow around the continental keel. However, shear wave splitting patterns in a few regions of eastern North America indicate that a component of lithospheric anisotropy must exist, particularly in regions containing the largest keel thicknesses. For eastern North America, as well as for splitting observations in Australia, Europe, and South America, we favor a model in which anisotropy is controlled by a combination of both lithospheric deformation and subcontinental mantle flow.
Abstract. P-wave and S-wave delay times from the broadband data of the southern Africa seismic experiment have been inverted to obtain three-dimensional images of velocity perturbations in the mantle beneath southern Africa. High velocity mantle roots appear to extend to depths of at least 250 km, and locally to depths of 300 km beneath the Kaap-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.