The Polycomb (Pc) protein is a component of a multimeric, chromatin-associated Polycomb group (PcG) protein complex, which is involved in stable repression of gene activity. The identities of components of the PcG protein complex are largely unknown. In a two-hybrid screen with a vertebrate Pc homolog as a target, we identify the human RING1 protein as interacting with Pc. RING1 is a protein that contains the RING finger motif, a specific zinc-binding domain, which is found in many regulatory proteins. So far, the function of the RING1 protein has remained enigmatic. Here, we show that RING1 coimmunoprecipitates with a human Pc homolog, the vertebrate PcG protein BMI1, and HPH1, a human homolog of the PcG protein Polyhomeotic (Ph). Also, RING1 colocalizes with these vertebrate PcG proteins in nuclear domains of SW480 human colorectal adenocarcinoma and Saos-2 human osteosarcoma cells. Finally, we show that RING1, like Pc, is able to repress gene activity when targeted to a reporter gene. Our findings indicate that RING1 is associated with the human PcG protein complex and that RING1, like PcG proteins, can act as a transcriptional repressor.
In Drosophila melanogaster, the Polycomb-group (PcG) and trithorax-group (trxG) genes have been identified as repressors and activators, respectively, of gene expression. Both groups of genes are required for the stable transmission of gene expression patterns to progeny cells throughout development. Several lines of evidence suggest a functional interaction between the PcG and trxG proteins. For example, genetic evidence indicates that the enhancer of zeste [E(z)] gene can be considered both a PcG and a trxG gene. To better understand the molecular interactions in which the E(z) protein is involved, we performed a two-hybrid screen with Enx1/EZH2, a mammalian homolog of E(z), as the target. We report the identification of the human EED protein, which interacts with Enx1/EZH2. EED is the human homolog of eed, a murine PcG gene which has extensive homology with the Drosophila PcG gene extra sex combs (esc). Enx1/EZH2 and EED coimmunoprecipitate, indicating that they also interact in vivo. However, Enx1/EZH2 and EED do not coimmunoprecipitate with other human PcG proteins, such as HPC2 and BMI1. Furthermore, unlike HPC2 and BMI1, which colocalize in nuclear domains of U-2 OS osteosarcoma cells, Enx1/EZH2 and EED do not colocalize with HPC2 or BMI1. Our findings indicate that Enx1/EZH2 and EED are members of a class of PcG proteins that is distinct from previously described human PcG proteins.In Drosophila melanogaster, the genes of the Polycomb group (PcG) and trithorax group (trxG) are part of a cellular memory system, which is responsible for the stable inheritance of gene activity. The PcG and trxG genes have been identified in Drosophila as repressors (PcG) (18,22,27,28,38) and activators (trxG) (20, 21), respectively, of homeotic gene activity. PcG and trxG genes were originally found in Drosophila, but mammalian homologs have also been identified and appear to function like their Drosophila homologs (reviewed in reference 37). It has been proposed that PcG proteins repress gene expression through the formation of multimeric protein complexes. We have recently shown that the human PcG proteins HPH1 and HPH2 coimmunoprecipitate, cofractionate, and colocalize in nuclear domains with the human PcG proteins BMI1 (2, 12, 33) and HPC2, a recently identified, novel human Polycomb protein (33,34). Furthermore, we have found that the human RING1 protein coimmunoprecipitates and colocalizes with HPC2 and other PcG proteins, indicating that RING1 is associated with, or is part of, the mammalian PcG complex (33, 35). These results indicate that mammalian PcG proteins form a multimeric protein complex.
In Drosophila melanogaster, the Polycomb-group (PcG) genes have been identified as repressors of gene expression. They are part of a cellular memory system that is responsible for the stable transmission of gene activity to progeny cells. PcG proteins form a large multimeric, chromatin-associated protein complex, but the identity of its components is largely unknown. Here, we identify two human proteins, HPH1 and HPH2, that are associated with the vertebrate PcG protein BMI1. HPH1 and HPH2 coimmunoprecipitate and cofractionate with each other and with BMI1. They also colocalize with BMI1 in interphase nuclei of U-2 OS human osteosarcoma and SW480 human colorectal adenocarcinoma cells. HPH1 and HPH2 have little sequence homology with each other, except in two highly conserved domains, designated homology domains I and II. They share these homology domains I and II with the Drosophila PcG protein Polyhomeotic (Ph), and we, therefore, have named the novel proteins HPH1 and HPH2. HPH1, HPH2, and BMI1 show distinct, although overlapping expression patterns in different tissues and cell lines. Two-hybrid analysis shows that homology domain II of HPH1 interacts with both homology domains I and II of HPH2. In contrast, homology domain I of HPH1 interacts only with homology domain II of HPH2, but not with homology domain I of HPH2. Furthermore, BMI1 does not interact with the individual homology domains. Instead, both intact homology domains I and II need to be present for interactions with BMI1. These data demonstrate the involvement of homology domains I and II in protein-protein interactions and indicate that HPH1 and HPH2 are able to heterodimerize.
Polycomb (Pc) is part of a Pc group (PcG) protein complex that is involved in repression of gene activity during Drosophila and vertebrate development. To identify proteins that interact with vertebrate Pc homologs, we performed two-hybrid screens with Xenopus Pc (XPc) and human Pc 2 (HPC2). We find that the C-terminal binding protein (CtBP) interacts with XPc and HPC2, that CtBP and HPC2 coimmunoprecipitate, and that CtBP and HPC2 partially colocalize in large PcG domains in interphase nuclei. CtBP is a protein with unknown function that binds to a conserved 6-amino-acid motif in the C terminus of the adenovirus E1A protein. Also, the Drosophila CtBP homolog interacts, through this conserved amino acid motif, with several segmentation proteins that act as repressors. Similarly, we find that CtBP binds with HPC2 and XPc through the conserved 6-amino-acid motif. Importantly, CtBP does not interact with another vertebrate Pc homolog, M33, which lacks this amino acid motif, indicating specificity among vertebrate Pc homologs. Finally, we show that CtBP is a transcriptional repressor. The results are discussed in terms of a model that brings together PcG-mediated repression and repression systems that require corepressors such as CtBP.
Summary. Polycomb group (PcG) proteins are involved in the stable transmittance of the repressive state of their gene targets throughout the cell cycle. Mis-expression of PcG proteins can lead to proliferative defects and tumorigenesis. There are two separate multimeric PcG protein complexes: an EED±EZH2-containing complex and a BMI1±RING1-containing complex. In the normal human follicle mantle, both PcG complexes have mutually exclusive expression patterns. BMI1±RING1 is expressed, but EZH2±EED is not. Here, we studied the expression of both complexes in six cases of mantle cell lymphoma (MCL), which is derived from the follicle mantle. MCL cells can be cultured in vitro and stimulated to proliferation. We found that resting MCL cells expressed BMI1±RING1, but not EZH2±EED, like normal mantle cells. Proliferating MCL cells, however, showed strongly enhanced expression of EZH2. Also, BMI1 and RING1 continued to be expressed in proliferating MCL. This is the first demonstration that EZH2 expression can be upregulated in fresh lymphoma cells. To test whether the enhanced EZH2 expression was causal for the increased proliferation in MCL, we overexpressed EZH2 in two different cell lines. In the B cell-derived Ramos cell line, EZH2 overexpression caused an increase in the proliferation rate. This suggests a possible causal effect between EZH2 upregulation and increased proliferation in haematopoietic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.