Effect of trapping as a microscopic phenomenon in a degenerate plasma is investigated in the presence of a quantizing magnetic field. The plasma comprises degenerate electrons and non-degenerate ions. The presence of the quantizing magnetic field is discussed briefly and the effect of trapping is investigated by using the Fermi-Dirac distribution function. The linear dispersion relation for ion acoustic wave is derived in the presence of the quantizing magnetic field and its influence on the propagation characteristics of the linear ion acoustic wave is discussed. Subsequently, fully nonlinear equations for ion acoustic waves are used to obtain the Sagdeev potential and the investigation of solitary structures. The formation of solitary structures is studied both for fully and partially degenerate plasmas in the presence of a quantizing magnetic field. Both compressive and rarefactive solitons are obtained for different conditions of temperature and magnetic field.
In the present work, we have investigated the effect of trapping as a microscopic phenomenon on the formation of solitary structures in the presence of a quantizing magnetic field in an electron-positron-ion (e-p-i) plasma having degenerate electrons and positrons, whereas ions are taken to be classical and cold. We have found that positron concentration, quantizing magnetic field, and finite electron temperature effects not only affect the linear dispersion characteristics of the electrostatic waves under consideration but also have a significant bearing on the propagation of solitary structures in the nonlinear regime. Importantly, the system under consideration has been found to allow the formation of compressive solitary structures only. The work presented here may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments and in intense-laser plasma interactions.
We study the spin and ion effects in quantum plasma, where the two-fluid model of electrons is being used which treats the spin-up and -down populations relative to the magnetic field as different species. We find the susceptibility of electrons and ions where the ions are classical, but strongly coupled. The general dispersion relation is derived for wave propagation in homogeneous magnetized plasmas for arbitrary direction of propagation. We discuss the applicability of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.