Cardiopulmonary responses to prolonged hyperoxia and their relationships to the development of lung pathology have not been fully characterized in primates. In this study, circulatory hemodynamics and pulmonary function, vascular permeability, and leukocyte sequestration were measured in male baboons after 100% O2 exposure and related to ultrastructural changes of lung injury by electron microscopy. Three groups of animals were exposed to 100% O2 in an exposure cage for 40, 66, and 80 h, respectively. A fourth group of animals was exposed in a cage for 80 h and then anesthetized and ventilated with 100% O2 for additional time. These animals were exposed for a total duration of 110 h or until death from the injury. Physiological responses to hyperoxia were characterized by decreases in total lung capacity and inspiratory capacity at 80 and 110 h. A significant increase in pulmonary leukocyte accumulation was noted by 80 h. Extravascular lung water and permeability surface-area product increased at 80 and 110 h. Cardiac output and stroke volume also decreased, and systemic vascular resistance increased after 80 and 110 h of hyperoxia. Histopathological changes were present in the lungs of all but the 40-h exposure group. Animals exposed for 66 h showed endothelial injury and neutrophil accumulation. By 80 h, animals showed endothelial cell destruction, interstitial edema, and type I cell injury. At 110 h, animals showed substantial destruction of endothelial and type I epithelial cells, exposure of alveolar basement membrane, congestion of capillaries, and substantial interstitial edema. The data indicate that histological changes by electron microscopy precede physiological responses to hyperoxic pulmonary injury in baboons by as much as 14 h and that the physiological responses to early hyperoxic injury are relatively insensitive to the pathological injury.
Moderate exposures to hyperoxia are becoming increasingly common in clinical medicine as advancing technology allows O2 to be more effectively delivered to nonintubated patients. The sensitivity of the lung to injury by a subchronic exposure to 60% O2 was investigated, using baboons and serial lobar biopsies. Because results obtained from different regions of the lung were compared, the alveolar architecture of different lung lobes of three controls was studied, with the use of electron microscopic morphometric analyses, to assess possible lobar differences in volume, surface, and numerical densities of cells and tissues. In animals exposed to 60% O2, the same techniques were used to assess specific tissue changes in the epithelial, interstitial, and endothelial compartments of the alveolar septa. All six lobes of the normal baboon lung were found to be identical with respect to alveolar architecture. Thus, for gases of low reactivity and given in high concentrations, such as O2, cross-comparisons between different lobes are appropriate. Exposure to 60% O2 was found to cause proliferation of alveolar type II epithelium, suggesting a low-grade, chronic epithelial injury. Animals allowed to recover for 8 wk in room air showed progressive changes in the alveolar interstitium, involving increases in both cells and matrix. Because sequential lobar resections were done, animals were exposed both to 60% O2 and to the effects of general anesthesia and thoracotomies. The exposure to 60% O2 for 2 wk in this experimental setting leads to an alveolar septal injury that includes a progressive interstitial fibrotic response.
We hypothesized that in unilateral lung injury, bilateral hypoxic ventilation would induce vasoconstriction in the normal lung, redirect blood flow to the injured lung, and cause enhanced edema formation. Unilateral left lung injury was induced by intrabronchial instillation of 1.5 ml/kg of 0.1 N HCl. After HCl injury, blood flow to the injured left lung decreased progressively from 0.70 +/- 0.04 to 0.37 +/- 0.05 l/min and percent of flow to the injured left lung (QL/QT) decreased from 37.7 +/- 2.2 to 23.6 +/- 2.2% at 240 min. Exposure to hypoxia (12% O2) for three 10-min episodes did not affect QL/QT in normal animals, but after unilateral HCl injury, it caused blood flow to the injured left lung to increase significantly. A concomitant decrease in blood flow occurred to the noninjured right lung, resulting in a significant increase in QL/QT. The enhanced blood flow to the injured lung was associated with a significant increase in the wet-to-dry lung weight ratio in the dependent regions of the injured lung. These findings demonstrate that in unilateral HCl-induced lung injury, transient hypoxia can enhance blood flow to the areas of injury and increase lung edema formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.