The isothermal crystallization kinetics, the morphology, and the melting behavior of melt‐processed composites of poly(phenylene sulfide) (PPS) with a thermotropic liquid crystalline copolyester, Vectra A950, (TLCP) were studied by differential scanning calorimetry (DSC) and optical microscopy. The crystallization behavior of PPS in PPS/TLCP composites is observed to be highly sensitive to Tc and immiscible TLCP content in the composites. The spherulite growth rate, the overall crystallization rate, and the activation energy of PPS in PPS/TLCP composites are markedly depressed by the presence of TLCP. The analysis of the Avrami kinetic parameters (n and k) indicates that blending of TLCP with PPS causes heterogeneous growth process and nucleation mechanisms. At low Tcs, the PPS crystallization rate is faster than that neat PPS with ≤30 wt% TLCP loading whereas at high Tcs it remains almost unchanged. The analysis of the melting behavior of these composites indicates that the stability of PPS crystals and their reorganization is influenced both by the Tcs and the composite compositions. The sizes and the number of spherulites change a great extent with composite composition with a drop of spherulite rapid growth rate, at constant Tc, with increasing content of TLCP in composites. The analysis based on the Lauritzen‐Hoffmann secondary nucleation theory, using present DSC data, indicates that present data predominantly follow a linear growth trend over a present range of Tcs and PPS crystallization in composites still occurs according to regime II kinetics, whereby multiple surface nuclei form on the substrate with multiple nucleation acts commencing before initially formed growth layer is completed. The fold surface free energy of PPS chains in composites is found higher than that of neat PPS, leading to an average higher work of chain folding and is ascribed to a general development of the PPS chain mobility in the composite melt. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers
The article deals with the melting and nonisothermal crystallization behavior of neat poly (phenylene sulphide) (PPS) and its composites with a thermotropic liquid crystalline polymer (TLCP)—Vectra A950, prepared by melt mixing and probed by differential scanning calorimetry. The various macrokinetic models namely, the Ozawa, the modified Avrami, the Tobin, and the Mo models were applied to describe the crystallization kinetics under nonisothermal conditions. The kinetic crystallizabilty of PPS/TLCP composites calculated using the approach of Ziabicki varies depending on these two composite composition‐induced effects. Similarly Mo model predicts that to obtain a higher degree of crystallizabilty for PPS/TLCP composites, a higher cooling rate should be used. The effective energy barrier based on the differential isoconversional method of Friedman is found to be an increasing function of relative degree of melt conversion. The effect is explained in terms of nucleation theory proposed by Wunderlich to crystallization of polymers. The Lauritzen–Hoffman parameters are estimated using G = 1/t0.5 effective activation energy equation proposed by Vyazovkin and Sbirrazzuoli. The Kg values estimated from latter equations are more comparable with values obtained using isothermal crystallization data than 1/t0.5 method. Furthermore, the kinetic analysis using this equation shows a regime transition from regime II to regime III for 100/00, 90/10, 80/20 PPS/TLCP composites, basically attributed to reduced mobility of PPS chains in composites. This regime II to III transition is accompanied by a morphological transition from defective spherulitic sheaf‐like structures to ordered sheaf‐like structures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1070–1100, 2010
This work was aimed at understanding how the injection-molding temperature affected the final mechanical properties of in situ composite materials based on polycarbonate (PC) reinforced with a liquid-crystalline polymer (LCP). To that end, the LCP was a copolyester, called Vectra A950 (VA), made of 73 mol % 4-hydroxybenzoic acid and 27 mol % 6-hydroxy-2 naphthoic acid. The injection-molded PC/VA composites were produced with loadings of 5, 10, and 20 wt % VA at three different processing barrel temperatures (280, 290, and 3008C). When the composite was processed at barrel temperatures of 280 and 2908C, VA provided reinforcement to PC. The resulting injection-molded structure had a distinct skin-core morphology with unoriented VA in the core. At these barrel temperatures, the viscosity of VA was lower than that of PC. However, when they were processed at 3008C, the VA domains were dispersed mainly in spherical droplets in the PC/VA composites and thus were unable to reinforce the material. The rheological measurements showed that now the viscosity of VA was higher than that of PC at 3008C. This structure development during the injection molding of these composites was manifested in the mechanical properties. The tensile modulus and tensile strength of the PC/VA composites were dependent on the processing temperature and on the VA concentrations. The modulus was maximum in the PC/VA blend with 20 wt % VA processed at 2908C. The Izod impact strength of the composites tended to markedly decrease with increasing VA content. The magnitude of the loss modulus decreased with increasing VA content at a given processing temperature. This was attributed to the anisotropic reinforcement of VA. Similarly, as the VA content increased, the modulus and thus the reinforcing effect were improved comparatively with the processing temperature increasing from 280 to 2908C; this, however, dropped in the case of composites processed at 3008C, at which the modulus anisotropy was reduced. Dynamic oscillatory shear measurements revealed that the viscoelastic properties, that is, the shear storage modulus and shear loss modulus, improved with decreasing processing temperatures and increasing VA contents in the composites. Also, the viscoelastic melt behavior (shear storage modulus and shear loss modulus) indicated that the addition of VA changed the distribution of the longer relaxation times of PC in the PC/VA composites. Thus, the injection-molding processing temperature played a vital role in optimizing the morphology-dependent mechanical properties of the polymer/LCP composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.