The digestive responses and degradation of ergovaline and production of lysergic acid in the rumen of sheep offered Neotyphodium coenophialum-infected tall fescue straw at 2 ergovaline levels were investigated. Six crossbred wethers (56 +/- 3.0 kg of BW) were used in a randomized crossover design involving 2 treatments, for a total of 6 observations per treatment. The experiment consisted of two 28-d feeding periods with a 14-d washout period between them. The treatments were 1) tall fescue straw containing <0.010 mg of ergovaline/kg (E-), and 2) tall fescue straw containing 0.610 mg of ergovaline/kg (E+). Feed, orts, and feces were measured and analyzed for DM, ADF, and CP, and used to determine digestibilities. Feed and water intake were monitored throughout the feeding periods. Body weight and serum prolactin levels were measured at the beginning and end of each feeding period. Ruminal fluid was sampled 3 times (d 0, 3, and 28) during each 28-d feeding period for determination of ergovaline, lysergic acid, ammonia, and pH. Samples were collected before feeding (0 h) and at 6 and 12 h after feeding. Total fecal and urine collection commenced on d 21 and continued until d 25 of each feeding period. Ruminal ammonia, ruminal pH, and rectal temperature were not influenced by ergovaline concentration (P > 0.10). Digestion of DM, ADF, and CP was not different between treatments (P > 0.10). Daily water intake was less for the E+ diet (2.95 vs. 2.77 L/d; P < 0.05) as was serum prolactin (22.9 vs. 6.4 ng/mL; P < 0.05). Ergovaline concentration in ruminal fluid increased over sampling days at each sampling time (P < 0.05). Lysergic acid concentration in ruminal fluid increased over time from d 0 to 3 (P < 0.05) but was not different between d 3 and 28 (P > 0.10). In the E+ treatment, ergovaline was not detectable in the urine, whereas the concentration in the feces was 0.480 mg/kg. Lysergic acid was detected in the diet of the E+ treatment at 0.041 g/kg, lysergic acid in the urine was 0.067 mg/kg and in the feces was 0.102 mg/kg. The apparent digestibility of the alkaloids was 64.2% for ergovaline and -12.5% for lysergic acid. Approximately 35% of dietary ergovaline and 248% of dietary lysergic acid were recovered in the feces and urine. The appearance of lysergic acid in the feces, urine, and ruminal fluid is likely due to microbial degradation of ergovaline in the rumen and further breakdown in the lower digestive tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.