A susceptibility locus for bipolar disorder was previously localized to chromosome 4q35 by genetic linkage analysis. We have applied a positional cloning strategy, combined with association analysis and provide evidence that a cadherin gene, FAT, confers susceptibility to bipolar disorder in four independent cohorts (allelic P-values range from 0.003 to 0.024). In two case-control cohorts, association was identified among bipolar cases with a family history of psychiatric illness, whereas in two cohorts of parent-proband trios, association was identified among bipolar cases who had exhibited psychosis. Pooled analysis of the case-control cohort data further supported association (P = 0.0002, summary odds ratio = 2.31, 95% CI: 1.49-3.59). We localized the bipolar-associated region of the FAT gene to an interval that encodes an intracellular EVH1 domain, a domain that interacts with Ena/VASP proteins, as well as putative b-catenin binding sites. Expression of Fat, Catnb (b-catenin), and the three genes (Enah, Evl and Vasp) encoding the Ena/VASP proteins, were investigated in mice following administration of the mood-stabilizing drugs, lithium and valproate. Fat was shown to be significantly downregulated (P = 0.027), and Catnb and Enah were significantly upregulated (P = 0.0003 and 0.005, respectively), in response to therapeutic doses of lithium. Using a protein interaction map, the expression of genes encoding murine homologs of the FAT (ft)-interacting proteins was investigated. Of 14 interacting molecules that showed expression following microarray analysis (including several members of the Wnt signaling pathway), eight showed significantly altered expression in response to therapeutic doses of lithium (binomial P = 0.004). Together, these data provide convergent evidence that FAT and its protein partners may be components of a molecular pathway involved in susceptibility to bipolar disorder.
Overall the findings suggest some important differences in the characteristics of women with primary versus secondary PVD which may have management-related implications.
Bipolar affective disorder is a severe mood disorder that afflicts approximately 1% of the population worldwide. Twin and adoption studies have indicated that genetic factors contribute to the disorder and while many chromosomal regions have been implicated, no susceptibility genes have been identified. In this present study, we undertook a 10 cM genome screen using 400 microsatellite markers in a large multigenerational bipolar pedigree consisting of 40 individuals, including six affecteds. We found strongest evidence for linkage to chromosome 13q14. A maximum NPL score of 4.09 (P = 0.008) was obtained between markers D13S1272 and D13S153 using GENEHUNTER. A maximum two-point LOD score of 2.91 ( = 0.0) was found for marker D13S153 and a maximum three-point LOD score of 3.0 was obtained between markers D13S291 and D13S153 under a recessive model with 90% maximum age-specific penetrance and including bipolar I and unipolar individuals as affected. Several other markers in the region, D13S175, D13S218, D13S263, and D13S156 had two-point LOD scores greater than 1.5. These results meet the criteria for evidence of suggestive linkage. Haplotype analysis enabled us to narrow the likely disease region to a 6 cM region between markers D13S1272 and D13S1319, which contains the serotonin 2A receptor candidate gene. Two single nucleotide polymorphisms were identified in this gene but we did not detect any significant differences in allele frequency in a case-control sample. The region on chromosome 13q14-32 has previously been implicated in other bipolar and schizophrenia cohorts. Our results provide further support for the existence of a susceptibility locus on chromosome 13q14. Molecular Psychiatry (2001) 6, 396-403.
Bipolar affective disorder is a severe mood disorder that afflicts approximately 1% of the population worldwide. Twin and adoption studies have indicated that genetic factors contribute to the disorder and while many chromosomal regions have been implicated, no susceptibility genes have been identified. We undertook a combined analysis of 10 cM genome screen data from a single large bipolar affective disorder pedigree, for which we have previously reported linkage to chromosome 13q14 (Badenhop et al, 2001) and 12 pedigrees independently screened using the same 400 microsatellite markers. This 13 pedigree cohort consisted of 231 individuals, including 69 affected members. Two-point LOD score analysis was carried out under heterogeneity for three diagnostic and four genetic models. Non-parametric multipoint analysis was carried out on regions of interest. Two-point heterogeneity LOD scores (HLODs) greater than 1.5 were obtained for 11 markers across the genome, with HLODs greater than 2.0 obtained for four of these markers. The strongest evidence for linkage was at 3q25-26 with a genome-wide maximum score of 2.49 at D3S1279. Six markers across a 50 cM region at 3q25-26 gave HLODs greater than 1.5, with three of these markers producing scores greater than 2.0. Multipoint analysis indicated a 20 cM peak between markers D3S1569 and D3S1614 with a maximum NPL of 2.8 (P = 0.004). Three other chromosomal regions yielded evidence for linkage: 9q31-q33, 13q14 and 19q12-q13. The regions on chromosomes 3q and 13q have previously been implicated in other bipolar and schizophrenia studies. In addition, several individual pedigrees gave LOD scores greater than 1.5 for previously reported bipolar susceptibility loci on chromosomes 18p11, 18q12, 22q11 and 8p22-23.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.