This paper reviews the synthesis methods of nano titania particles and their utilization in various applications with concise discussion on the related health concerns. Owing to the efficient photocatalytic properties of nano titania particles along with high stability, super hydrophilicity and low cost, these particles are perfect candidate for the production for coatings on the surfaces of construction materials i.e. tiles, facades, wall etc. The nano titania coatings are capable of decomposing dust, dirt and organic pollutants in the presence of sunlight. These decomposed products may then easily be washed away by rinsing thus providing easy cleaning and keeps the buildings in younger or fresh look for decades.
With the breakthrough in advance technologies, researchers are looking to devise novel approaches to control different types of deadly cancers. Progress in medicinal plants research and nanotechnology has drawn scientist’s attention toward green synthesis of metallic nanoparticles by exploiting plants secondary metabolites owing to its advantage over routinely used physical and chemical synthesis (simple, one step approach to reduce and stabilize bulk silver into silver nanoparticles (AgNPs), cost effectiveness, energy efficient, biocompatibility and therapeutic significance). Owing to control size, shape and functional surface corona, AgNPs hold considerable potentiality for therapeutic applications by opting different mechanistic pathways such as mitochondrial disruption, DNA fragmentation, cell membrane disruption, interruption of cellular signaling pathways, altered enzyme activity and reactive oxygen species (ROS) production leading to apoptosis etc In this review, we discussed the green synthesized AgNPs in the possible cancer treatment by harnessing phytochemicals present in plant extract. In addition, this review also provides recent advances and achievements in utilization of green synthesized AgNPs in cancer treatment and proposes mechanistic action for their anticancer and cytotoxic potential. By understanding the mechanistic action of AgNPs responsible for their therapeutic efficacy will help to devise customized therapies and treatment against cancer as a potential cancer therapeutic tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.