The objectives of this study were (1) to characterize protective stepping responses to unpredictable forward/backward postural perturbation in Parkinson's disease (PD) and (2) to assess whether vibrotactile cues of the impending fall improve the stepping response. Twenty mild PD patients, 7 advanced PD patients, and 17 age-matched controls stood on a platform moving unpredictably forward and backward, requiring a protective step to maintain balance. Direction-coded vibrotactile cues, triggered by leg tilt, were provided to prompt step generation. All subjects showed quicker reaction time, shorter steps, and smaller total trunk displacement when stepping backward than when stepping forward. Advanced PD patients took shorter, slower, and an increased number of protective steps. The only abnormality observed in mild PD patients was slightly slower backward steps. Vibrotactile feedback reduced the amount of trunk displacement observed before taking a protective step but did not improve any abnormality in PD patients. Early PD patients had near-normal protective stepping responses to unpredictable perturbations, but advanced patients made slow and short steps both forward and backward. Given that latencies were preserved even in unpredictable conditions, step slowness and hypometria are the primary abnormalities of the stepping response in PD. As voluntary locomotor stepping in PD is reported to improve with sensory feedback, the lack of such improvement in our study implies that additional sensory cues cannot help automatic reflex-like stepping reactions in PD patients.
Background Cranioplasty is an increasingly common procedure performed in neurosurgical centres following a decompressive craniectomy (DC), however, timing of the procedure varies greatly. Objectives The aim of this study is to compare the surgical outcomes of an early compared to a late cranioplasty procedure. Methods Ninety adult patients who underwent a prosthetic cranioplasty between 2014 and 2017 were studied retrospectively. Timing of operation, perioperative complications and length of stay were assessed. Early and late cranioplasties were defined as less or more than 3 months since craniectomy respectively. Results Of the 90 patients, 73% received a late cranioplasty and 27% received an early cranioplasty. The median interval between craniectomy and cranioplasty was 13 months [range 3–84] in late group versus 54 days [range 33–90] in early group. Twenty-two patients in the early group (91%) received a cranioplasty during the original admission while undergoing rehabilitation. Complications were seen in 25 patients (28%). These included wound or cranioplasty infection, hydrocephalus, symptomatic pneumocephalus, post-operative haematoma and cosmetic issues. The complication rate was 21% in the early group and 30% in the late group ( P value 0.46). There was no significant difference in the rate of infection or hydrocephalus between the two groups. Length of stay was not significantly increased in patients who received an early cranioplasty during their initial admission (median length of stay 77 days versus 63 days, P value 0.28). Conclusion We have demonstrated the potential for early cranioplasty to be a safe and viable option, when compared to delayed cranioplasty.
Redirecting gaze towards new targets often requires not only eye movements, but also synergistic rotations of the head, trunk and feet. This study investigates the influence of postural constraints on eye and head latency during voluntary refixations in the horizontal plane in 14 normal subjects. Three postural conditions were presented, (1) sitting in a chair using only eye and head movements, (2) standing without feet movements and (3) standing with feet movement. Head-eye reorientations towards eccentric un-predictable locations were performed towards ±45° and ±90° targets and back towards a central, spatially predictable target. Results showed that postural constraints affected eye latency but only when subjects knew the future location of the target (recentering "return" trials). Specifically, relatively longer eye latencies were observed when subjects had to turn their feet back towards the predictable central target. These findings suggest that the additional CNS processing required to reduce degrees of freedom during predictive motion introduces delays to the eye movement in order to efficiently assemble the components of a new motor synergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.