Due to their distinctive molecular architecture, ABA triblock copolymers will undergo specific self-assembly processes into various nanostructures upon introduction into a B-block selective solvent. Although much of the focus in ABA triblock copolymer self-assembly has been on equilibrium nanostructures, little attention has been paid to the guiding principles of nanostructure formation during non-equilibrium processing conditions. Here we report a universal and quantitative method for fabricating and controlling ABA triblock copolymer hierarchical structures using solvent-non-solvent rapid-injection processing. Plasmonic nanocomposite hydrogels containing gold nanoparticles and hierarchically-ordered hydrogels exhibiting structural color can be assembled within one minute using this rapid-injection technique. Surprisingly, the rapid-injection hydrogels display superior mechanical properties compared with those of conventional ABA hydrogels. This work will allow for translation into technologically relevant areas such as drug delivery, tissue engineering, regenerative medicine, and soft robotics, in which structure and mechanical property precision are essential.
[1] Evaporite-rich sedimentary deposits on Mars were formed under chemical conditions quite different from those on the Earth. Their unique chemistries record the chemical and aqueous conditions under which they were formed and possibly subsequent conditions to which they were subjected. We have produced evaporite salt mineral suites in the laboratory under two simulated Martian atmospheres: (1) present-day and (2) a model of an ancient Martian atmosphere rich in volcanic gases. The composition of these synthetic Mars evaporites depends on the atmospheres under which they were desiccated as well as the chemistries of their precursor brines. In this report, we describe a Mars analog evaporite laboratory apparatus and the experimental methods we used to produce and analyze the evaporite mineral suites. The acidic, "paleo-Mars" gas mixture was CO 2 with trace amounts of SO 2 , N 2 O, and HCl to simulate an atmosphere influenced by volcanic emissions. Brines formed by the interaction of water with an SNC-derived synthetic Mars mineral mix were produced under the acidic Mars atmospheric gas mixture. The brines were then desiccated under the two different simulated Mars conditions in the evaporite apparatus. Infrared reflectance spectroscopy and SEM microprobe analyses reveal that salts precipitated from the brine evaporated under simulated present Mars conditions were chemically different from those formed under the acidic Mars atmosphere conditions. The primary salt precipitated from the brine evaporated under present-day Mars conditions was a hydrated calcium sulfate, with lesser amounts of a magnesium sulfate and aluminum sulfate. Salts precipitated from the brine evaporated under an acidic atmosphere were dominated by magnesium sulfates, with lesser amounts of Na 2 SO 4 . These experiments suggest ways that relative cation abundances in Martian sulfate-bearing sediments can indicate the atmospheric and aqueous conditions under which they were formed. We conclude that the salts that make up the Meridiani sediments were probably formed by the interaction of water and igneous rocks at a high water-to-rock ratio, followed by desiccation under an atmosphere rich in acidic volcanic volatiles. The formation of Ca sulfates on Mars has most likely been due to the evaporation or freezing and sublimation of waters in equilibrium with an atmosphere much like the present.
Abstract-Drill-core samples from the Bosumtwi impact structure (1.07 Myr old and 10.5 km in diameter) in Ghana exhibit mineralogical evidence for post-impact hydrothermal alteration. Nine samples of drill core obtained through the 2004 International Continental Scientific Drilling Project (ICDP) were studied, including an uppermost fallback layer overlying impactite breccias, and partly deformed massive meta-graywacke bedrock. The petrographic study revealed alteration veins containing secondary sericitic muscovite (comparable to 2M 1 -muscovite) crosscutting original bedding in meta-graywacke and forming a matrix between clasts in impactite breccias. X-ray diffraction (XRD) shows that these impactite samples are rich in 2M 1 -muscovite, consistent with post-impact fluid deposition and alteration. Optical analysis indicates the presence of a pre-impact stratiform chlorite in meta-graywacke samples and a secondary alteration chlorite occurring in all samples. Secondary illite was detected in upper impactites of drill core LB-08A and samples containing accretionary lapilli. The lower temperature constraint for the hydrothermal event is given by 2M 1 -muscovite, secondary chlorite, and illite, all of which form at temperatures greater than 280°C. An absence of recrystallization of quartz and feldspar indicates an upper temperature constraint below 900 °C. The presence of alteration materials associated with fractures and veins in the uppermost impactites of drill cores LB-07A and LB-08A indicates that a post-impact hydrothermal system was present in and adjacent to the central uplift portion of the Bosumtwi impact structure. A sample containing accretionary lapilli obtained from drill core LB-05A exhibits limited evidence that hydrothermal processes were more widespread within the impactites on the crater floor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.