The major unexplained phenomenon in fibrotic conditions is an increase in replicating fibroblasts. In this report we present evidence that oxygen free radicals can both stimulate and inhibit proliferation of cultured human fibroblasts, and that fibroblasts themselves release superoxide (O2.-) free radicals. Fibroblasts released O2.- in concentrations which stimulated proliferation, a finding confirmed by a dose-dependent inhibition of proliferation by free radical scavengers. Oxygen free radicals released by a host of agents may thus provide a very fast, specific and sensitive trigger for fibroblast proliferation. Prolonged stimulation may result in fibrosis, and agents which inhibit free radical release may have a role in the prevention of fibrosis.
Na+, K+-ATPase is ubiquitously expressed in the plasma membrane of all animal cells where it serves as the principal regulator of intracellular ion homeostasis. Na+, K+-ATPase is responsible for generating and maintaining transmembrane ionic gradients that are of vital importance for cellular function and subservient activities such as volume regulation, pH maintenance, and generation of action potentials and secondary active transport. The diversity of Na+, K+-ATPase subunit isoforms and their complex spatial and temporal patterns of cellular expression suggest that Na+, K+-ATPase isozymes perform specialized physiological functions. Recent studies have shown that the alpha subunit isoforms possess considerably different kinetic properties and modes of regulation and the beta subunit isoforms modulate the activity, expression and plasma membrane targeting of Na+, K+-ATPase isozymes. This review focuses on recent developments in Na+, K+-ATPase research, and in particular reports of expression of isoforms in various tissues and experiments aimed at elucidating the intrinsic structural features of isoforms important for Na+, K+-ATPase function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.