[1] Consideration of petrology, geochemistry, and mineral physics suggests that ancient subducted oceanic crusts cannot be the source materials supplying ocean island basalts (OIB). Melting of oceanic crusts cannot produce high-magnesian OIB lavas. Ancient oceanic crusts (>1 Ga) are isotopically too depleted to meet the required values of most OIB. Subducted oceanic crusts that have passed through subduction zone dehydration are likely to be depleted in water-soluble incompatible elements (e.g., Ba, Rb, Cs, U, K, Sr, Pb) relative to water-insoluble incompatible elements (e.g., Nb, Ta, Zr, Hf, Ti). Melting of residual crusts with such trace element composition cannot produce OIB. Oceanic crusts, if subducted into the lower mantle, will be >2% denser than the ambient mantle at shallow lower mantle depths. This negative buoyancy will impede return of the subducted oceanic crusts into the upper mantle. If subducted oceanic crusts melt at the base of the mantle, the resultant melts are even denser than the ambient peridotitic mantle, perhaps by as much as $15%. Neither in the solid state nor in melt form can bulk oceanic crusts subducted into the lower mantle return to upper mantle source regions of oceanic basalts. Deep portions of recycled oceanic lithosphere are important geochemical reservoirs hosting volatiles and incompatible elements as a result of metasomatism taking place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere. These metasomatized and recycled deep portions of oceanic lithosphere are the most likely candidates for OIB sources in terms of petrology, geochemistry and mineral physics.
Niu and Batiza [Earth Planet. Sci. Lett. 148 (1997) 471^483] show that lavas from the seamounts on the flanks of the East Pacific Rise (EPR) between 5 ‡ and 15 ‡N vary from extremely depleted tholeiites to highly enriched alkali basalts. The extent of depletion and enrichment exceeds the known range of seafloor lavas in terms of the abundances and ratios of incompatible elements. New Sr^Nd^Pb isotope data for these lavas show variations ( 87 Sr/ 86 Sr = 0.702362^0.702951; 206 Pb/ 204 Pb = 18.080^19.325 and 143 Nd/ 144 Nd 0.512956^0.513183) larger than observed in lavas erupted on the nearby EPR axis. These isotopic ratios correlate with each other, with the abundances and ratios of incompatible elements, with the abundances of measured major elements such as MgO, CaO, Na 2 O and TiO 2 contents, and with the abundances and ratios of major elements corrected for crystal fractionation to Mg# = 0.72 (Ti 72 , Al 72 , Fe 72 , Ca 72 , Na 72 , and Ca 72 /Al 72 ). These coupled correlations and the spatial distribution of seamounts require an EPR mantle source that has long-term ( s 1 Ga) lithological heterogeneities on very small scales [Niu and Batiza, Earth Planet. Sci. Lett. 148 (1997) 471^483]. Mid-ocean ridge basalt (MORB) major element systematics are, to a great extent, inherited from their fertile sources, which requires caution when using major element data to infer melting conditions. The significant correlations in elemental and isotopic variability (defined as RSD% = 1c/ meanU100) between seamount and axial lavas suggest that both seamount and axial volcanisms share a common heterogeneous mantle source. We confirm previous interpretations [Niu and Batiza, Earth Planet. Sci. Lett. 148 (1997) 471^483; Niu et al., J. Geophys. Res. 104 (1999) 7067^7087] that the geochemical variability of lavas from the broad northern EPR region results from melting-induced mixing of a two-component mantle with the enriched (easily melted) component dispersed as physically distinct domains in a more depleted (refractory) matrix prior to the major melting events. The data also allow the conclusion that recycled oceanic crust cannot explain elevated abundances of elements such as Ba, Rb, Cs, Th, U, K, Pb, Sr etc. in enriched MORB and many ocean island basalts. These elements will be depleted in recycled oceanic crust that has passed through subduction zone dehydration reactions. We illustrate that deep portions of recycled oceanic lithosphere are important geochemical reservoirs hosting these and other incompatible elements as a result of metasomatism taking place at the interface between the low velocity zone and the cooling and thickening oceanic lithosphere. ß 2002 Elsevier Science B.V. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.