We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15
Observational evidence for the radial alignment of satellites with their dark matter host has been accumulating steadily in the past few years. The effect is seen over a wide range of scales, from massive clusters of galaxies down to galaxy-sized systems, yet the underlying physical mechanism has still not been established. To this end, we have carried out a detailed analysis of the shapes and orientations of dark matter substructures in high-resolution N-body cosmological simulations. We find a strong tendency for radial alignment of the substructure with its host halo: the distribution of halo major axes is very anisotropic, with the majority pointing towards the center of mass of the host. The alignment peaks once the sub-halo has passed the virial radius of the host for the first time, but is not subsequently diluted, even after the halos have gone through as many as four pericentric passages. This evidence points to the existence of a very rapid dynamical mechanism acting on these systems and we argue that tidal torquing throughout their orbits is the most likely candidate.Comment: v2: 13 pages, 10 figures, ApJ in press. Revisions include a new section (4.2) comparing our results with observations, and a few added reference
We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15
We present a study of the distribution of X-ray AGN in a representative sample of 26 massive clusters at 0.15
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.