We calculate the average of two characteristic polynomials for the real Ginibre ensemble of asymmetric random matrices, and its chiral counterpart. Considered as quadratic forms they determine a skew-symmetric kernel from which all complex eigenvalue correlations can be derived. Our results are obtained in a very simple fashion without going to an eigenvalue representation, and are completely new in the chiral case. They hold for Gaussian ensembles which are partly symmetric, with kernels given in terms of Hermite and Laguerre polynomials respectively, depending on an asymmetry parameter. This allows us to interpolate between the maximally asymmetric real Ginibre and the Gaussian Orthogonal Ensemble, as well as their chiral counterparts.
We solve a family of Gaussian two-matrix models with rectangular N × (N + ν) matrices, having real asymmetric matrix elements and depending on a non-Hermiticity parameter µ. Our model can be thought of as the chiral extension of the real Ginibre ensemble, relevant for Dirac operators in the same symmetry class. It has the property that its eigenvalues are either real, purely imaginary, or come in complex conjugate eigenvalue pairs. The eigenvalue joint probability distribution for our model is explicitly computed, leading to a non-Gaussian distribution including K-Bessel functions. All n-point density correlation functions are expressed for finite N in terms of a Pfaffian form. This contains a kernel involving Laguerre polynomials in the complex plane as a building block which was previously computed by the authors. This kernel can be expressed in terms of the kernel for complex non-Hermitian matrices, generalising the known relation among ensembles of Hermitian random matrices. Compact expressions are given for the density at finite N as an example, as well as its microscopic large-N limits at the origin for fixed ν at strong and weak non-Hermiticity.
We apply the method of skew-orthogonal polynomials (SOP) in the complex plane to asymmetric random matrices with real elements, belonging to two different classes. Explicit integral representations valid for arbitrary weight functions are derived for the SOP and for their Cauchy transforms, given as expectation values of traces and determinants or their inverses, respectively. Our proof uses the fact that the joint probability distribution function for all combinations of real eigenvalues and complex conjugate eigenvalue pairs can be written as a product. Examples for the SOP are given in terms of Laguerre polynomials for the chiral ensemble (also called the non-Hermitian real Wishart-Laguerre ensemble), both without and with the insertion of characteristic polynomials. Such characteristic polynomials play the role of mass terms in applications to complex Dirac spectra in field theory. In addition, for the elliptic real Ginibre ensemble we recover the SOP of Forrester and Nagao in terms of Hermite polynomials.
We compute the gap probability that a circle of\ud radius r around the origin contains exactly k complex eigenvalues. Four different ensembles of random matrices are considered: the Ginibre ensembles and their chiral complex counterparts, with both complex (beta=2) or quaternion real (beta=4) matrix elements. For general non-Gaussian weights we give a Fredholm determinant or Pfaffian representation respectively, depending on the non-Hermiticity parameter. At maximal non-Hermiticity, that is for rotationally invariant weights, the product of Fredholm eigenvalues for beta=4 follows from beta=2 by skipping every second factor, in contrast to the known relation for Hermitian ensembles. On additionally choosing Gaussian weights we give new explicit expressions for the Fredholm eigenvalues in the chiral case, in terms of Bessel-K and incomplete Bessel-I functions. This compares to known results for the Ginibre ensembles in terms of incomplete exponentials. Furthermore we present an asymptotic expansion of the logarithm of the gap probability for large argument r at large N in all four ensembles, up to including the third order linear term. We can provide strict upper and lower bounds and present numerical evidence for its conjectured values, depending on the number of exact zero eigenvalues in the chiral ensembles. For the Ginibre ensemble at beta=2 exact results were previously derived by Forrester
We solve a random two-matrix model with two real asymmetric matrices whose primary purpose is to describe certain aspects of quantum chromodynamics with two colours and dynamical fermions at nonzero quark chemical potential µ. In this symmetry class the determinant of the Dirac operator is real but not necessarily positive. Despite this sign problem the unquenched matrix model remains completely solvable and provides detailed predictions for the Dirac operator spectrum in two different physical scenarios/limits: (i) the ε-regime of chiral perturbation theory at small µ, where µ 2 multiplied by the volume remains fixed in the infinite-volume limit and (ii) the high-density regime where a BCS gap is formed and µ is unscaled. We give explicit examples for the complex, real, and imaginary eigenvalue densities including N f = 2 non-degenerate flavours. Whilst the limit of two degenerate masses has no sign problem and can be tested with standard lattice techniques, we analyse the severity of the sign problem for non-degenerate masses as a function of the mass split and of µ.On the mathematical side our new results include an analytical formula for the spectral density of real Wishart eigenvalues in the limit (i) of weak non-Hermiticity, thus completing the previous solution of the corresponding quenched model of two real asymmetric Wishart matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.