Analysis of minimal residual disease (MRD) can predict outcome in acute lymphoblastic leukemia (ALL). A large prospective study in childhood ALL has shown that MRD analysis using immunoglobulin (Ig) and T cell receptor (TCR) gene rearrangements as PCR targets can identify good and poor prognosis groups of substantial size that might profit from treatment adaptation. This MRD-based risk group assignment was based on the kinetics of tumor reduction. Consequently, the level of MRD has to be defined precisely in follow-up samples. However, current PCR methods do not allow easy and accurate quantification. We have tested 'real-time' quantitative PCR (RQ-PCR) using the TaqMan technology and compared its sensitivity with two conventional MRD-PCR methods, ie dot-blot and liquid hybridization of PCR amplified Ig/TCR gene rearrangements using clone-specific radioactive probes. In RQ-PCR the generated specific PCR product is measured at each cycle ('real-time') by cleavage of a fluorogenic intrinsic TaqMan probe. The junctional regions of rearranged Ig/TCR genes define the specificity and sensitivity of PCR-based MRD detection in ALL and are generally used to design a patient-specific probe. In the TaqMan technology we have chosen for the same approach with the design of patient-specific TaqMan probes at the position of the junctional regions. We developed primers/probe combinations for RQ-PCR analysis of a total of three IGH, two TCRD, two TCRG and three IGK gene rearrangements in four randomly chosen precursor-B-ALL. In one patient, 12 bone marrow follow-up samples were analyzed for the presence of MRD using an IGK PCR target. The sensitivity of the RQ-PCR technique appeared to be comparable to the dotblot method, but less sensitive than liquid hybridization. Although it still is a relatively expensive method, RQ-PCR allows sensitive, reproducible and quantitative MRD detection with a high throughput of samples providing possibilities for semi-automation. We consider this novel technique as an important step forward towards routinely performed diagnostic MRD studies.
The discrepancies could be assigned to the presence of 'atypical' TCRD gene rearrangements or translocations only detectable by SB, but also to efficient PCR-based detection of rearrangements derived from small subclones, which are difficult to detect with SB. Indications for oligoclonality were observed in 38% and 30% of patients with TCRG and TCRD gene rearrangements, respectively, which is comparable to the frequency of oligoclonality in IGH locus. Based on the combined data it was possible to reduce the broad panel of six TCRD and 12 TCRG primer combinations for MRD studies to two TCRD combinations (V␦2-D␦3 and D␦2-D␦3) and six TCRG combinations (V␥I, V␥II, V␥IV family-specific primers with J␥1.1/2.1 and J␥1.3/2.3 primers) resulting in the detection of 80% and 97% of all TCRD and TCRG gene rearrangements, respectively. Finally, the heteroduplex PCR data indicate that MRD monitoring with TCRG and/or TCRD targets is possible in approximately 80% of childhood precursor-B-ALL patients; ෂ55% of patients even have two TCRG and/or TCRD targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.