The slide of granular material in nature and engineering can happen under air (subaerial), under a liquidlike water (submerged), or a transition between these two regimes, where a subaerial slide enters a liquid and becomes submerged. Here, we experimentally investigate these three slide regimes (i.e., subaerial, submerged, and transitional) in two dimensions, for various slope angles, material types, and bed roughness. The goal is to shed light on the complex morphodynamics and flow structure of these granular flows and also to provide comprehensive benchmarks for the validation and parametrization of the numerical models. The slide regime is found to be a major controller of the granular morphodynamics (e.g., shape evolution and internal flow structure). The time history of the runout distance for the subaerial and submerged cases present a similar three-phase trend (with acceleration, steady flow, and deceleration phases) tough with different spatiotemporal scales. Compared to the subaerial cases, the submerged cases show longer runout time and shorter final runout distances. The transitional trends, however, show additional deceleration and reacceleration. The observations suggest that the impact of slide angle, material type, and bed roughness on the morphodynamics is less significant where the material interacts with water. Flow structure, extracted using a granular particle image velocimetry technique, shows a relatively power-law velocity profile for the subaerial condition and strong circulations for the submerged condition. An unsteady theoretical model based on the µ(I) rheology is developed and is shown to be effective in the prediction of the average velocity of the granular mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.