Abstract. We show that if a system of differential equations has an elementary first integral (i.e. a first integral expressible in terms of exponentials, logarithms and algebraic functions) then it must have a first integral of a very simple form. This unifies and extends results of Mordukhai-Boltovski, Ritt and others and leads to a partial algorithm for finding such integrals.
This paper gives a corollary to Schanuel's conjecture that indicates when an exponential or logarithmic constant is transcendental over a given field of constants. The given field is presumed to have been built up by starting with the rationals Q with π adjoined and taking algebraic closure, adjoining values of the exponential function or of some fixed branch of the logarithmic function, and then repeating these two operations a finite number of times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.