De novo germline variants in several components of the SWI/SNF-like BAF complex can cause Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD-powered databases to facilitate further genotype-phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype-genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation.
Facioscapulohumeral muscular dystrophy is caused by partial deletion of the D4Z4 repeat array on chromosome 4q35. Genetic diagnosis is based on sizing of this repeat array, which is complicated by cross-hybridization of a homologous polymorphic repeat array on chromosome 10 and by the frequent exchanges between these chromosomal regions. The restriction enzyme XapI optimizes the diagnosis of facioscapulohumeral muscular dystrophy by uniquely digesting 4-derived repeat units and leaving 10-derived repeat units undigested, thus complementing BlnI, which uniquely digests 10-derived repeat units. A triple analysis with EcoRI, EcoRI/BlnI, and XapI unequivocally allows characterization of each of the four alleles, whether homogeneous or hybrid. This is particularly useful in the case of identical sized 4-derived and 10-derived arrays, in situations of suspected facioscapulohumeral muscular dystrophy with nonstandard allele configurations, and for assignment of hybrid fragments to their original alleles.
The autosomal dominant myopathy facioscapulohumeral muscular dystrophy (FSHD) is causally related to a short Eco RI fragment detected by probe p13E-11. This remnant fragment is the result of a deletion of an integral number of tandemly arrayed 3.3 kb repeat units (D4Z4) on 4q35. Despite intensive efforts, no transcribed sequences have been identified within this array. Previously, we have shown that these repeats on 4q35 have been exchanged for a similar highly homologous repeat locus on 10q26 in 20% of the population and that a short chromosome 10-like array on 4q35 also results in FSHD. Here, we describe the hybrid structure of some of these repeat arrays, reflecting additional sub-telomeric instability. In three healthy individuals carrying a 4-like repeat on chromosome 10 or vice versa, one repeat array was shown to consist of hybrid clusters of 4-derived and 10-derived repeat units. Moreover, employing pulsed field gel electrophoresis analysis, we identified two unrelated individuals carrying deletions of a chromosomal segment (p13E-11) proximal to the repeat locus. These deletions were not associated with FSHD. In one of these cases, however, an expansion of the deletion into the repeat array was observed in one of his children suffering from FSHD. These data provide additional evidence for instability of this sub-telomeric region and suggests that the length of the repeat, and not its intrinsic properties, is crucial to FSHD. Moreover, they are in agreement with the hypothesis that FSHD is caused by a position effect in which the repeat structure influences the expression of genes nearby. Therefore, the region deleted proximal to the repeat locus in healthy individuals can be instrumental to refine the critical region for FSHD1.
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD1A) is associated with contractions of the polymorphic D4Z4 repeat array on chromosome 4qter. The disease has a high frequency of new mutations of mitotic origin. Pulsed-field gel electrophoresis-based studies show that mitotic mutations leading to somatic mosaicism occur equally frequently in patients and parents. Nevertheless, somatic mosaicism in FSHD is mainly reported in asymptomatic parents by applying standard Southern analysis after linear gel electrophoresis. Explaining this apparent discrepancy, we here demonstrate that somatic mosaicism in FSHD patients goes largely undetected using the standard diagnostic technique, indicating that linear electrophoresis is unsuitable to identify mosaic patients. As a consequence, the phenotype of mosaic patient's offspring will be underestimated, whereas the recurrence risk in the symptomatic mosaic individuals will be overestimated. Moreover, somatic mosaicism may partly explain the observation of anticipation in de novo kindreds. Therefore, clinicians should always consider pulsed-field gel electrophoresis analysis in de novo FSHD families, in particular when the patient's phenotype is much milder than expected based on D4Z4 length proper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.