We present new observations of the nuclear star cluster in the central parsec of the Galaxy with the adaptive optics assisted, integral field spectrograph SINFONI on the ESO/VLT. Our work allows the spectroscopic detection of early and late type stars to m K ≥ 16, more than 2 magnitudes deeper than our previous data sets. Our observations result in a total sample of 177 bona fide early-type stars. We find that most of these Wolf Rayet (WR), O-and B-stars reside in two strongly warped disks between 0.8" and 12" from SgrA*, as well as a central compact concentration (the S-star cluster) centered on SgrA*. The later type B stars (m K > 15) in the radial interval between 0.8" and 12" seem to be in a more isotropic distribution outside the disks. The observed dearth of late type stars in the central few arcseconds is puzzling, even when allowing for stellar collisions. The stellar mass function of the disk stars is extremely top heavy with a best fit power law of dN/dm ∝ m −0.45±0.3 .Since at least the WR/O-stars were formed in situ in a single star formation event ∼6 Myrs ago, this mass function probably reflects the initial mass function (IMF). The mass functions of the S-stars inside 0.8" and of the early-type stars at distances beyond 12" are compatible with a standard Salpeter/Kroupa IMF (best fit power law of dN/dm ∝ m −2.15±0.3 ).
We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M 74), NGC 1232, NGC 3184 and NGC 5194 (M 51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiral arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outer-most parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼ 5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia, Vogelsberger & Hernquist (2013) and others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.