Ergot: A New Disease Threat to Sorghum in the Americas and Australia orghum, Sorghum bicolor (L.) Moench, is the world's fifth most important cereal crop, cultivated on about 45 million hectares for food, feed, beverage, and fodder. The most significant technological change since the 1960s has been the development and use of F 1 hybrid seed ( 14), which has lead to a dramatic improvement in the crop's productivity. Sorghum cultivation in intensive, commercialized systems where yields average 3 to 5 t ha -1 relies almost totally on hybrid seed. In contrast, yields vary widely and average less than 1 t ha -1 in low-input production systems.Ergot is a serious disease that affects the production of F 1 hybrid seed. Ergot is particularly severe in male-sterile lines (Alines) when either nonsynchronous flowering of A-line and restorer lines (R-lines) or adverse environmental conditions result in a lack of viable pollen and delayed seed set. In India, losses of 10 to 80% have been reported in hybrid seed production fields. Similarly, ergot epiphytotics in Zimbabwe result in regular annual losses of 12 to 25% and occasionally in total losses.
Downy mildews are amongst the most widespread and economically important pathogens of cultivated grasses in the tropics and subtropics. Despite their importance, molecular methods, particularly DNA sequence analysis, have rarely been applied to either species identification or to the determination of phylogenetic relationships between species. Here we report the presence of several cryptic species in the genus Peronosclerospora. Further we confirm that maize can be parasitised by several species of Peronosclerospora, including P. eriochloae, which has not been reported previously as a pathogen of maize. The presence of 14 distinct phylogenetic lineages, including three that are parasitic to maize, highlights the current fragmentary knowledge on the diversity and classification of species within Peronosclerospora. Species identification in Peronosclerospora has been traditionally based on the host genus and a set of variable morphological characteristics, which has meant that the identification of species is often unreliable. This situation is primed for the application of molecular techniques for the identification of species. One of the lineages parasitic to maize in Australia has not yet been formally described and its distribution is not known. Future investigation including a broad sampling of downy mildews from maize and other cultivated and native grasses on a world-wide basis is a prerequisite to a re-evaluation of quarantine regulations aimed at restricting or limiting their spread.
Agalactia and feed refusal are classical signs of poisoning by rye ergot (C purpurea), but this is the first time that sorghum ergot has been associated with a similar syndrome.
Surveys of commercial soybean fields, disease nurseries, and trial plots of soybean were conducted throughout eastern Australia between 1979 and 1996, and 694 isolates of Phytophthora sojae were collected and classified into races. Fourteen races, 1, 2, 4, 10, 15, and 25, and eight new races, 46 to 53, were identified, but only races 1, 4, 15, 25, 46, and 53 were found in commercial fields. Races 1 and 15 were the only races found in commercial fields in the soybean-growing areas of Australia up until 1989, with race 1 being the dominant race. Race 4 was found in central New South Wales in 1989 on cultivars with the Rps1a gene, and it is now the dominant race in central and southern New South Wales. Races 46 and 53 have only been found once, in southern New South Wales, and race 25 was identified in the same region in 1994 on a cultivar with the Rps1k gene. Only races 1 and 15 have been found in the northern soybean-growing regions, with the latter dominating, which coincides with the widespread use of cultivars with the Rps2 gene. Changes in the race structure of the P. sojae population from commercial fields in Australia follow the deployment of specific resistance genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.