Forested wetlands dominated by black ash (Fraxinus nigra) are currently threatened by the rapid expansion of the exotic emerald ash borer (EAB; Agrilus planipennis, Coleoptera: Buprestidae) in North America, and very little is known about the hydrology and ecology of black ash wetlands.The ecohydrological response of forested wetlands following a canopy disturbance has the potential to affect critical ecosystem services, and the degree of this effect may largely depend on the wetland's hydrogeological setting. The main objectives of this study were to characterize the hydrologic connectivity of uninfested black ash wetlands and evaluate the water table response to a simulated EAB disturbance. We hypothesized that black ash wetlands in northern Michigan were (a) seasonally connected to, and derived the majority of their water from groundwater, and (b) wetland water tables would be elevated following a simulated EAB infestation due to decreased transpiration with the loss of black ash. The results indicate that the black ash wetland sites received most of their water from groundwater discharge. Significantly smaller site transpiration fluxes and significantly slower rates of drawdown were detected during the growing season in the girdled and ash-cut treatment sites, and these responses collectively produced significantly elevated wetland water tables when compared to control sites in the latter portions of the growing season. However, the wetlands' strong connection with groundwater sources likely buffered the magnitude of hydrological responses associated with the loss of black ash from the landscape. KEYWORDS black ash, emerald ash borer, forested wetlands, groundwater, invasive pest disturbance, natural tracers, wetland hydrology
Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations in depressional black ash wetlands in the Ottawa National Forest in Michigan to mimic the short-term and long-term effects of EAB. These wetlands were planted with 10 alternative tree species in 2013. Based on initial results in the Michigan sites, a riparian corridor in the Superior Municipal Forest in Wisconsin was planted with three alternative tree species in 2015. Results across both locations indicate that silver maple (Acer saccharinum L.), red maple (Acer rubrum L.), American elm (Ulmus americana L.), and northern white cedar (Thuja occidentalis L.) are viable alternative species to plant in black ash-dominated wetlands. Additionally, selectively planting on natural or created hummocks resulted in two times greater survival than in adjacent lowland sites, and this suggests that planting should be implemented with microsite selection or creation as a primary control. Regional landowners and forest managers can use these results to help mitigate the canopy and structure losses from EAB and maintain forest cover and hydrologic function in black ash-dominated wetlands after infestation.
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the distribution of coaster brook trout (a life history variant of Salvelinus fontinalis) spawning redds. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. A monitoring well system consisting of 22 wells was installed in the riverbed to measure surface and subsurface temperatures over a 13-month period. The array of monitoring wells was positioned to span areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from five depths within each monitoring well. Temperatures in the substrate beneath the spawning area were generally less variable than river temperatures, whereas temperatures under the nonspawning area were generally more variable and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated groundwater velocities in the spawning area were primarily in the upward direction and were generally greater in magnitude than velocities in the nonspawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater flux into the river bed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.