The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr À1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z > 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15-150 keV ) detector that will detect bursts, calculate 1 0 -4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2-10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of $1 mcrab ($2 ; 10 À11 ergs cm À2 s À1 in the 15-150 keV band ), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients, with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community, and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program for the mission will provide funding for community involvement. Innovations from the Swift program applicable to the future include (1) a large-area gamma-ray detector using the new CdZnTe detectors, (2) an autonomous rapid-slewing spacecraft, (3) a multiwavelength payload combining optical, X-ray, and gamma-ray instruments, (4) an observing program coordinated with other ground-based and space-based observatories, and (5) immediate multiwavelength data flow to the community. The mission is currently funded for 2 yr of operations, and the spacecraft will have a lifetime to orbital decay of $8 yr.
Context. The Crab nebula was observed with the HESS stereoscopic Cherenkov-telescope array between October 2003 and January 2005 for a total of 22.9 h (after data quality selection). This period of time partly overlapped with the commissioning phase of the experiment; observations were made with three operational telescopes in late 2003 and with the complete 4 telescope array in January-February 2004 and October 2004-January 2005. Aims. Observations of the Crab nebula are discussed and used as an example to detail the flux and spectral analysis procedures of HESS. The results are used to evaluate the systematic uncertainties in HESS flux measurements. Methods. The Crab nebula data are analysed using standard HESS analysis procedures, which are described in detail. The flux and spectrum of γ-rays from the source are calculated on run-by-run and monthly time-scales, and a correction is applied for long-term variations in the detector sensitivity. Comparisons of the measured flux and spectrum over the observation period, along with the results from a number of different analysis procedures are used to estimate systematic uncertainties in the measurements. Results. The data, taken at a range of zenith angles between 45• and 65• , show a clear signal with over 7500 excess events. The energy spectrum is found to follow a power law with an exponential cutoff, with photon index Γ = 2.39 ± 0.03 stat and cutoff energy E c = (14.3 ± 2.1 stat ) TeV between 440 GeV and 40 TeV. The observed integral flux above 1 TeV is (2.26 ± 0.08 stat ) × 10 −11 cm −2 s −1 . The estimated systematic error on the flux measurement is estimated to be 20%, while the estimated systematic error on the spectral slope is 0.1.
We investigate models for the class of ultraluminous non-nuclear X-ray sources (ULXs) seen in a number of galaxies and probably associated with star-forming regions. Models where the X-ray emission is assumed to be isotropic run into several difficulties. In particular formation of sufficient numbers of the required ultramassive black-hole X-ray binaries is problematic, and the likely transient behaviour of the resulting systems is not in good accord with observation. The assumption of mild X-ray beaming suggests instead that ULXs may represent a shortlived but extremely common stage in the evolution of a wide class of X-ray binaries. The best candidate for this is the phase of thermal-timescale mass transfer inevitable in many intermediate and high-mass X-ray binaries. This in turn suggests a link with the Galactic microquasars. The short lifetimes of high-mass X-ray binaries would explain the association of ULXs with episodes of star formation. These considerations still allow the possibility that individual ULXs may contain extremely massive black holes.Comment: 4 pages, no figures; accepted for ApJ Letter
Narrow‐line Seyfert 1 (NLS1) galaxies have low‐mass black holes and mass accretion rates close to (or exceeding) Eddington, so a standard blackbody accretion disc should peak in the extreme ultraviolet. However, the lack of true absorption opacity in the disc means that the emission is better approximated by a colour temperature corrected blackbody, and this colour temperature correction is large enough (∼2.4) that the bare disc emission from a zero spin black hole can extend into the soft X‐ray bandpass. Part of the soft X‐ray excess seen in these objects must be intrinsic emission from the disc unless the vertical structure is very different to that predicted. None the less, this is not the whole story even for the extreme NLS1 as the shape of the soft excess is much broader than predicted by a bare disc spectrum, indicating some Compton upscattering by warm, optically thick material. We associate this with the disc itself, so it must ultimately be powered by mass accretion. We build an energetically self‐consistent model assuming that the emission thermalizes to a (colour temperature corrected) blackbody only at large radii. At smaller radii the gravitational energy is split between powering optically thick Comptonized disc emission (forming the soft X‐ray excess) and an optically thin corona above the disc (forming the tail to higher energies). We show examples of this model fit to the extreme NLS1 RE J1034+396, and to the much lower Eddington fraction broad‐line Seyfert 1 PG 1048+231. We use these to guide our fits and interpretations of three template spectra made from co‐adding multiple sources to track out a sequence of active galactic nucleus (AGN) spectra as a function of L/LEdd. Both the individual objects and template spectra show the surprising result that the Compton upscattered soft X‐ray excess decreases in importance with increasing L/LEdd. The strongest soft excesses are associated with low mass accretion rate AGN rather than being tied to some change in disc structure around Eddington. We argue that this suggests a true break in accretion flow properties between stellar and supermassive black holes. The new model is publicly available within the xspec spectral fitting package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.