Proteins with intrinsically disordered domains are implicated in a vast range of biological processes, especially in cell signaling and regulation. Having solved the quaternary structure of the folded domains in the tumor suppressor p53 by a multidisciplinary approach, we have now determined the average ensemble structure of the intrinsically disordered N-terminal transactivation domain (TAD) by using residual dipolar couplings (RDCs) from NMR spectroscopy and small-angle x-ray scattering (SAXS). Remarkably, not only were we able to measure RDCs of the isolated TAD, but we were also able to do so for the TAD in both the full-length tetrameric p53 protein and in its complex with a specific DNA response element. We determined the orientation of the TAD ensemble relative to the core domain, found that the TAD was stiffer in the proline-rich region (residues 64 -92), which has a tendency to adopt a polyproline II (PPII) structure, and projected the TAD away from the core. We located the TAD in SAXS experiments on a complex between tetrameric p53 and four Taz2 domains that bind tightly to the TAD (residues 1-57) and acted as ''reporters.'' The p53-Taz2 complex was an extended cross-shaped structure. The quality of the SAXS data enabled us to model the disordered termini and the folded domains in the complex with DNA. The core domains enveloped the response element in the center of the molecule, with the Taz2-bound TADs projecting outward from the core.hybrid methods ͉ natively unfolded ͉ protein ͉ residual dipolar coupling ͉ small-angle x-ray scattering T he tumor suppressor p53 is a multifunctional protein that plays vital roles in maintaining the integrity of the human genome, controlling apoptosis, cell-cycle arrest, and DNA repair (1). p53 is a homotetramer, with folded tetramerization and core domains that are linked together and flanked by intrinsically disordered (or natively unfolded) domains at the N and C termini (1, 2). As such, with 37% of its structure intrinsically disordered, p53 is typical of the structural content of the human proteome. More than 30% of eukaryotic genomes encode contiguous unfolded regions longer than 30 aa in length, and up to 80% in cancer-associated proteins (3). This new class of intrinsically disordered proteins (IDPs) is involved in a vast range of cellular processes, including molecular recognition, transcription and transposition, packaging, repair and replication, as well as signaling, cell cycle control, multiprotein complex assembly, and endocytosis. Many partly or fully disordered proteins undergo conformational transitions to folded forms only on interaction with a target ligand (4). An intrinsically disordered domain is possibly an essential structural feature that facilitates promiscuous binding to many partner proteins and is also readily accessible for posttranslational modification that modulates binding.Solving the structures of proteins with intrinsically disordered domains now represents a major stumbling block in relating structure and biological function. Class...
Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, ɛ and γ. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer–dimer dissociation constant from its normal value of 120–150 nM.
Although the physiological function of the prion protein remains unknown, in vitro experiments suggest that the protein may bind copper (II) ions and play a role in copper transport or homoeostasis in vivo. The unstructured N-terminal region of the prion protein has been shown to bind up to six copper (II) ions, with each of these ions co-ordinated by a single histidine imidazole and nearby backbone amide nitrogen atoms. Individually, these sites have micromolar affinities, which is weaker than would be expected of a true cuproprotein. In the present study, we show that with subsaturating levels of copper, different forms of co-ordination will occur, which have higher affinity. We have investigated the copper-binding properties of two peptides representing the known copper-binding regions of the prion protein: residues 57-91, which contains four tandem repeats of the octapeptide GGGWGQPH, and residues 91-115. Using equilibrium dialysis and spectroscopic methods, we unambiguously demonstrate that the mode of copper co-ordination in both of these peptides depends on the number of copper ions bound and that, at low copper occupancy, copper ions are co-ordinated with sub-micromolar affinity by multiple histidine imidazole groups. At pH 7.4, three different modes of copper co-ordination are accessible within the octapeptide repeats and two within the peptide comprising residues 91-115. The highest affinity copper (II)-binding modes cause self-association of both peptides, suggesting a role for copper (II) in controlling prion protein self-association in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.