The principal objections to the proposition that organic agriculture can contribute significantly to the global food supply are low yields and insufficient quantities of organically acceptable fertilizers. We evaluated the universality of both claims. For the first claim, we compared yields of organic versus conventional or low-intensive food production for a global dataset of 293 examples and estimated the average yield ratio (organic:non-organic) of different food categories for the developed and the developing world. For most food categories, the average yield ratio was slightly <1.0 for studies in the developed world and >1.0 for studies in the developing world. With the average yield ratios, we modeled the global food supply that could be grown organically on the current agricultural land base. Model estimates indicate that organic methods could produce enough food on a global per capita basis to sustain the current human population, and potentially an even larger population, without increasing the agricultural land base. We also evaluated the amount of nitrogen potentially available from fixation by leguminous cover crops used as fertilizer. Data from temperate and tropical agroecosystems suggest that leguminous cover crops could fix enough nitrogen to replace the amount of synthetic fertilizer currently in use. These results indicate that organic agriculture has the potential to contribute quite substantially to the global food supply, while reducing the detrimental environmental impacts of conventional agriculture. Evaluation and review of this paper have raised important issues about crop rotations under organic versus conventional agriculture and the reliability of grey-literature sources. An ongoing dialogue on these subjects can be found in the Forum editorial of this issue.
To address the challenges of biodiversity conservation and commodity production, a framework has been proposed that distinguishes between the integration ("land sharing") and separation ("land sparing") of conservation and production. Controversy has arisen around this framework partly because many scholars have focused specifically on food production rather than more encompassing notions such as land scarcity or food security. Controversy further surrounds the practical value of partial trade-off analyses, the ways in which biodiversity should be quantified, and a series of scale effects that are not readily accounted for. We see key priorities for the future in (1) addressing these issues when using the existing framework, and (2) developing alternative, holistic ways to conceptualise challenges related to food, biodiversity, and land scarcity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.