Progressive HIV infection is characterized by dysregulation of the intestinal immune barrier, translocation of immunostimulatory microbial products, and chronic systemic inflammation that is thought to drive progression of disease to AIDS. Elements of this pathologic process persist despite viral suppression during highly active antiretroviral therapy (HAART) and drivers of these phenomena remain poorly understood. Disrupted intestinal immunity can precipitate dysbiosis that induces chronic inflammation in the mucosa and periphery of mice. However, putative microbial drivers of HIV-associated immunopathology versus recovery have not been identified in humans. Using high-resolution bacterial community profiling, we identified a dysbiotic mucosal-adherent community enriched in Proteobacteria and depleted of Bacteroidia members that was associated with markers of mucosal immune disruption, T cell activation, and chronic inflammation in HIV-infected subjects. Furthermore, this dysbiosis was evident among HIV-infected subjects undergoing HAART, and the extent of dysbiosis correlated with activity of the kynurenine pathway of tryptophan metabolism and plasma concentrations of the inflammatory cytokine interleukin-6 (IL-6), two established markers of disease progression. Gut-resident bacteria with capacity to metabolize tryptophan through the kynurenine pathway were found to be enriched in HIV-infected subjects, strongly correlated with kynurenine levels in HIV-infected subjects, and capable of kynurenine production in vitro. These observations demonstrate a link between mucosal-adherent colonic bacteria and immunopathogenesis during progressive HIV infection, which is apparent even in the setting of viral suppression during HAART. This link suggests that gut-resident microbial populations may influence intestinal homeostasis during HIV disease.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in late 2019, and its resulting coronavirus disease, COVID-19, was declared a pandemic by the World Health Organization on March 11, 2020. The rapid global spread of COVID-19 represents perhaps the most significant public health emergency in a century. As the pandemic progressed, a continued paucity of evidence on routes of SARS-CoV-2 transmission has resulted in shifting infection prevention and control guidelines between classically-defined airborne and droplet precautions. During the initial isolation of 13 individuals with COVID-19 at the University of Nebraska Medical Center, we collected air and surface samples to examine viral shedding from isolated individuals. We detected viral contamination among all samples, supporting the use of airborne isolation precautions when caring for COVID-19 patients.
Idiopathic chronic diarrhea (ICD) is a leading cause of morbidity amongst rhesus monkeys kept in captivity. Here, we show that exposure of affected animals to the whipworm Trichuris trichiura led to clinical improvement in fecal consistency, accompanied by weight gain, in four out of the five treated monkeys. By flow cytometry analysis of pinch biopsies collected during colonoscopies before and after treatment, we found an induction of a mucosal TH2 response following helminth treatment that was associated with a decrease in activated CD4+ Ki67+ cells. In parallel, expression profiling with oligonucleotide microarrays and real-time PCR analysis revealed reductions in TH1-type inflammatory gene expression and increased expression of genes associated with IgE signaling, mast cell activation, eosinophil recruitment, alternative activation of macrophages, and worm expulsion. By quantifying bacterial 16S rRNA in pinch biopsies using real-time PCR analysis, we found reduced bacterial attachment to the intestinal mucosa post-treatment. Finally, deep sequencing of bacterial 16S rRNA revealed changes to the composition of microbial communities attached to the intestinal mucosa following helminth treatment. Thus, the genus Streptophyta of the phylum Cyanobacteria was vastly increased in abundance in three out of five ICD monkeys relative to healthy controls, but was reduced to control levels post-treatment; by contrast, the phylum Tenericutes was expanded post-treatment. These findings suggest that helminth treatment in primates can ameliorate colitis by restoring mucosal barrier functions and reducing overall bacterial attachment, and also by altering the communities of attached bacteria. These results also define ICD in monkeys as a tractable preclinical model for ulcerative colitis in which these effects can be further investigated.
SUMMARYLaboratory diagnosis of Ebola virus disease plays a critical role in outbreak response efforts; however, establishing safe and expeditious testing strategies for this high-biosafety-level pathogen in resource-poor environments remains extremely challenging. Since the discovery of Ebola virus in 1976 via traditional viral culture techniques and electron microscopy, diagnostic methodologies have trended toward faster, more accurate molecular assays. Importantly, technological advances have been paired with increasing efforts to support decentralized diagnostic testing capacity that can be deployed at or near the point of patient care. The unprecedented scope of the 2014-2015 West Africa Ebola epidemic spurred tremendous innovation in this arena, and a variety of new diagnostic platforms that have the potential both to immediately improve ongoing surveillance efforts in West Africa and to transform future outbreak responses have reached the field. In this review, we describe the evolution of Ebola virus disease diagnostic testing and efforts to deploy field diagnostic laboratories in prior outbreaks. We then explore the diagnostic challenges pervading the 2014-2015 epidemic and provide a comprehensive examination of novel diagnostic tests that are likely to address some of these challenges moving forward.
On p. 1663,Table, the data reported for EtSPF, should readz-Printed by W HefFer &Sons Ltd Cambridge England
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.