Pure powdered compounds with a general formula ThEr(SiO)(PO) belonging to the zircon-xenotime family were successfully synthesized under hydrothermal conditions (250 °C, 7 days) as recently reported for the preparation of coffinite. Therefore, a thorough, combined PXRD, EDX, EXAFS, Raman, and FTIR analysis showed the formation of a solid solution in agreement with Vegard's law. Moreover, the examination of the local structure shows that the Th-O distances remain close to those found in ThSiO, whereas the Er-O distances show a significant decrease from 2.38(14) to 2.34(7) Å when increasing the erbium content from x = 0.2 to x = 1. The variation of the local structure also affects the PO groups that are surely distorted in the structure.
We explored the use of selected layered double hydroxides (LDHs) of different compositions and obtained by means of different routes (i.e., coprecipitation, anionic exchange and reconstruction) as iodine/iodate adsorbents. The influence of speciation (iodide vs. iodate) on iodine uptake was rather strong, resulting in much lower iodide incorporation. The Fourier transform of iodine K X-ray absorption edge data (EXAFS) of all iodate-LDHs showed a single I-O scattering path of 1.8 Å . Thermal stability and leaching experiments showed that the incorporated iodate and iodide were rather loosely bound in the interlayer space and were easily released under heating to 180°C and leaching with Milli-Q water and brine solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.