A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.
Three linear dipeptides Phe-Phe (FF), Tyr-Ala (YA) and Asp-Phe(OMe) (DF-OMe, also known as aspartame) were investigated via solid state (SS) NMR spectroscopy, differential scanning calorimetry (DSC), mass spectrometry, and scanning electron microscopy (SEM). Both 1D and 2D SS NMR techniques (1H MAS, 13C CP/MAS, and 1H–13C inverse HETCOR ultrafast MAS) were used to study the thermal stability and chemical processes of the self-assembled structures: peptide nanotubes (PNTs) and peptide nanowires (PNWs). Each of the investigated dipeptides underwent thermal rearrangement to cyclic dipeptides, also known as diketopiperazines (DKP). Employment of variable temperature (VT) 13C NMR measurements revealed that the cyclization of Phe-Phe (FF) PNT began at a temperature of 373 K, which is lower than the temperature reported previously. The process to form FF DKP would be anticipated to occur because of the removal of water from the hydrophilic channel of the PNTs. When FF PNT is thermally treated carefully and the subtle nanostructure is not damaged, the empty channel can be refilled with water during the diffusion process. An analysis of the thermal stability of YA dipeptide revealed that, as in case of FF, a synthesis of YA DKP is a facile process and can be performed in NMR rotor. YA DKP forms PNTs, which are more thermally stable than FF PNTs. Finally, aspartame forms fibrils and peptide nanowires, which is particulary important because it is commonly applied in the food industry.
The crystal structure of (1R,2S,3R,5R)-3-amino-6,6-dimethyl-2-hydroxybicyclo[3.1.1]heptane 1 was determined and it is presented in reference to the structure of (1R,2S,3R,5R)-3-(p-tosylamino)-6,6-dimethyl-2-hydroxybicyclo[3.1.1]heptane 2. 1H and 13C chemical shifts parameters for both structures and for whole unit cells were calculated by using the GIPAW (gauge including projector augmented waves) method. Theoretically calculated chemical shift tensor parameters were verified by 13C CP MAS, 2D PASS, and 13C–1H FSLG HETCOR results to obtain a full structural assignment for 13C and 1H resonances in the solid-state. PISEMA MAS experiment was performed to determine the molecular dynamics of aminoalcohol 1. The comparison of two structures, obtained after all-atom positions optimization after the GIPAW calculations, revealed small conformational differences consistent with the single-crystal X-ray diffaction results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.