The relatively low rates of magma production in island arcs and continental extensional settings require that the volume of silicic magma involved in large catastrophic caldera-forming (CCF) eruptions must accumulate over periods of 10 5 to 10 6 years. We address the question of why buoyant and otherwise eruptible highsilica magma should accumulate for long times in shallow chambers rather than erupt more continuously as magma is supplied from greater depths. Our hypothesis is that the viscoelastic behavior of magma chamber wall rocks may prevent an accumulation of overpressure sufficient to generate rhyolite dikes that can propagate to the surface and cause an eruption. The critical overpressure required for eruption is based on the model of Rubin (1995a). An approximate analytical model is used to evaluate the controls on magma overpressure for a continuously or episodically replenished spherical magma chamber contained in wall rocks with a Maxwell viscoelastic rheology. The governing parameters are the long-term magma supply, the magma chamber volume, and the effective viscosity of the wall rocks. The long-term magma supply, a parameter that is not typically incorporated into dike formation models, can be constrained from observations and melt generation models. For effective wall-rock viscosities in the range 10 18 to 10 20 Pa s -1 , dynamical regimes are identified that lead to the suppression of dikes capable of propagating to the surface. Frequent small eruptions that relieve magma chamber overpressure are favored when the chamber volume is small relative to the magma supply and when the wall rocks are cool. Magma storage, leading to conditions suitable for a CCF eruption, is favored for larger magma chambers (>10 2 km 3 ) with warm wall rocks that have a low effective viscosity. Magma storage is further enhanced by regional tectonic extension, high magma crystal contents, and if the effective wall-rock viscosity is lowered by microfracturing, fluid infiltration, or metamorphic reactions. The longterm magma supply rate and chamber volume are important controls on eruption frequency for all magma chamber sizes. The model can explain certain aspects of the frequency, volume, and spatial distribution of smallvolume silicic eruptions in caldera systems, and helps account for the large size of granitic plutons, their association with extensional settings and high thermal gradients, and the fact that they usually post-date associated volcanic deposits.
[1] Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ∼5 × 10 −14 m 2 . The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Citation: Gleeson, T
The Cretaceous to early Paleogene (ca. 140-50 Ma) was characterized by a greenhouse baseline climate, driven by elevated concentrations of atmospheric CO 2. Hypotheses for the elevated CO 2 concentrations invoke an increase in volcanic CO 2 production due to higher oceanic crust production rates, higher frequency of large igneous provinces, or increases in pelagic carbonate deposition, the last leading to enhanced carbonate subduction into the mantle source regions of arc volcanoes. However, these are not the only volcanic sources of CO 2 during this time interval. We show here that ocean-continent subduction zones, manifested as a global chain of continental arc volcanoes, were as much as 200% longer in the Cretaceous and early Paleogene than in the late Paleogene to present, when a cooler climate prevailed. In particular, many of these continental arcs, unlike island arcs, intersected ancient continental platform carbonates stored on the continental upper plate. We show that the greater length of Cretaceous-Paleogene continental arcs, specifi cally carbonate-intersecting arcs, could have increased global production of CO 2 by at least 3.7-5.5 times that of the present day. This magmatically driven crustal decarbonation fl ux of CO 2 through continental arcs exceeds that delivered by Cretaceous oceanic crust production, and was suffi cient to drive Cretaceous-Paleogene greenhouse conditions. Thus, carbonate-intersecting continental arc volcanoes likely played an important role in driving greenhouse conditions in the Cretaceous-Paleogene. If so, the waning of North American and Eurasian continental arcs in the Late Cretaceous to early Paleogene, followed by a fundamental shift in western Pacifi c subduction zones ca. 52 Ma to an island arc-dominated regime, would have been manifested as a decline in global volcanic CO 2 production, prompting a return to an icehouse baseline in the Neogene. Our analysis leads us to speculate that long-term (>50 m.y.) greenhouse-icehouse oscillations may be linked to fl uctuations between continental-and island arc-dominated states. These tectonic fl uctuations may result from large-scale changes in the nature of subduction zones, changes we speculate may be tied to the assembly and dispersal of continents. Specifi cally, dispersal of continents may drive the leading edge of continents to override subduction zones, resulting in continental arc volcanism, whereas assembly of continents or closing of large ocean basins may be manifested as large-scale slab rollback, resulting in the development of intraoceanic volcanic arcs. We suggest that greenhouse-icehouse oscillations are a natural consequence of plate tectonics operating in the presence of continental masses, serving as a large capacitor of carbonates that can be episodically purged during global fl are-ups in continental arcs. Importantly, if the global crustal carbonate reservoir has grown with time, as might be expected because platform carbonates on continents do not generally subduct, the greenhouse-driving potential of co...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.