We cloned and characterized the Drosophila homolog of mammalian Jun-N-terminal kinases (DJNK). We show that DJNK is encoded by basket (bsk). Like hemipterous (hep), which encodes the Drosophila JNK kinase, bsk is required in the embryo for dorsal closure, a process involving coordinate cell shape changes of ectodermal cells. Dorsal closure can also be blocked by dominant negative Drosophila cdc42, which has been shown to act upstream of JNKK in vertebrates. Therefore it appears that the JNK pathway is conserved and that it is involved in controlling cell morphogenesis in Drosophila. Although DJNK efficiently phosphorylates DJun in vitro, bsk function is not required for the specification of cell fate in the developing eye, a process that requires MAP kinase and DJun function.
The "cysteine string protein" (CSP) genes of higher eukaryotes code for a novel family of proteins characterized by a "J" domain and an unusual cysteine-rich region. Previous studies had localized the proteins in neuropil and synaptic terminals of larval and adult Drosophila and linked the temperature-sensitive paralysis of the mutants described here to conditional failure of synaptic transmission. We now use the null mutants as negative controls in order to reliably detect even low concentrations of CSPs by immunohistochemistry, employing three monoclonal antibodies. In wild-type flies high levels of cysteine string proteins are found not only in apparently all synaptic terminals of the embryonic, larval, and adult nervous systems, but also in the "tall cells" of the cardia, in the follicle cells of the ovary, in specific structures of the female spermatheca, and in the male testis and ejaculatory bulb. In addition, low levels of CSPs appear to be present in all tissues examined, including neuronal perikarya, axons, muscles, Malpighian tubules, and salivary glands. Western blots of isolated tissues demonstrate that of the four isoforms expressed in heads only the largest is found in non-neural organs. The wide expression of CSPs suggests that at least some of the various phenotypes of the null mutants observed at permissive temperatures, such as delayed development, short adult lifespan, modified electroretinogram, and optomotor behavior, may be caused by the lack of CSPs outside synaptic terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.