This study aims to explore practice, use, and risk of electroconvulsive therapy (ECT) in pregnancy. A systematic search was undertaken in the databases Medline, Embase, PsycINFO, SveMed and CINAHL (EBSCO). Only primary data-based studies reporting ECT undertaken during pregnancy were included. Two reviewers independently checked study titles and abstracts according to inclusion criteria and extracted detailed use, practice, and adverse effects data from full text retrieved articles. Studies and extracted data were sorted according to before and after year 1970, due to changes in ECT administration over time. A total of 67 case reports were included and studies from all continents represented. Altogether, 169 pregnant women were identified, treated during pregnancy with a mean number of 9.4 ECTs, at mean age of 29 years. Most women received ECT during the 2nd trimester and many were Para I. Main diagnostic indication in years 1970 to 2013 was Depression/Bipolar disorder (including psychotic depression). Missing data on fetus/child was 12 %. ECT parameter report was often sparse. Both bilateral and unilateral electrode placement was used and thiopental was the main anesthetic agent. Adverse events such as fetal heart rate reduction, uterine contractions, and premature labor (born between 29 and 37 gestation weeks) were reported for nearly one third (29 %). The overall child mortality rate was 7.1 %. Lethal outcomes for the fetus and/or baby had diverse associations. ECT during pregnancy is advised considered only as last resort treatment under very stringent diagnostic and clinical indications. Updated international guidelines are urgently needed.
Strontium isotopes are a unique tool to study soil-erosion dynamics. Changes in Sr isotope ratios (87 Sr/ 86 Sr) provide a record of late Quaternary landscape denudation of the Edwards Plateau of central Texas, United States. The use of Sr isotopes as a tracer for soil erosion is based on the observation that, in central Texas, the 87 Sr/ 86 Sr ratio of soil correlates with soil thickness. Plants and animals express the 87 Sr/ 86 Sr ratio of exchangeable Sr in the soil. Therefore, we use changes in Sr isotope ratios through a well-dated stratigraphic sequence of fossil plants and animals in Hall's Cave, Kerr County, Texas, as a proxy for temporal changes in soil thickness. By using this record we are able to characterize late Quaternary climate-driven soil-erosion dynamics on the Edwards Plateau. We find that continuous erosion removed at least 180 cm of soil at a constant minimum rate of 11 cm/k.y.; this continuous phase of erosion ended ca. 5 ka. The Sr isotope record of soil erosion is consistent with late Quaternary environmental change in central Texas that has been independently modeled by using local and regional climate records. However, the rate of this climate-driven soil-erosion event was an order of magnitude slower than recent soil erosion caused by human land use. These results link erosion to century-to millennial-scale climate change and are cautionary evidence that even greater landscape degradation may result from coincident climatic variability and anthropogenic influences.
Relict soils provide insights into Quaternary soil formation and erosion on the Edwards Plateau of central Texas and into soil-forming processes in karst terranes. Late Quaternary climate-driven soil erosion produced a mosaic of thick and thin soils on the Edwards Plateau landscape. Thick soils on uplands of the Edwards Plateau are interpreted to be relicts of a formerly more extensive soil cover that was eroded during the late Pleistocene to middle Holocene. The relict, thick soils are silicate-rich and most commonly overlie the relatively silicate-poor Cretaceous Edwards Limestone, which supports the idea that the thick soils did not form from weathering of the underlying limestone. Other potential sources of silicates for the relict soils include dust, alluvial sediments, and the Del Rio Clay, a stratigraphically higher but locally eroded clay-rich unit. Here we investigate the geographic distribution, texture, clay-sized mineralogy, rare earth element geochemistry, and neodymium isotope composition of the relict soils. We have found that the relict, thick soils are deeply weathered soils that occur dominantly over the Edwards Limestone and have a high clay content and a neodymium isotope composition that is similar to that of the Del Rio Clay. Thus, we propose that in situ weathering of the Del Rio Clay, along with partial weathering of the upper portion of the underlying Edwards Limestone produced thick chert- and clay-rich soils over resistant limestone. In areas like the Edwards Plateau, where pure limestones are interbedded with clay-rich strata, the overlying clay-rich strata must be considered as a possible silicate source to soils on pure limestone bedrock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.