The Internet of Things (IoT) is enhancing our lives in a variety of structures, which consists of smarter cities, agribusiness, and e-healthcare, among others. Even though the Internet of Things has many features with the consumer Internet of Things, the open nature of smart devices and their worldwide connection make IoT networks vulnerable to a variety of assaults. Several approaches focused on attack detection in Internet of Things devices, which has the longest calculation times and the lowest accuracy issues. It is proposed in this paper that an attack detection framework for Internet of Things devices, based on the DWU-ODBN method, be developed to alleviate the existing problems. At the end of the process, the proposed method is used to identify the source of the assault. It comprises steps such as preprocessing, feature extraction, feature selection, and classification to identify the source of the attack. A random oversampler is used to preprocess the input data by dealing with NaN values, categorical features, missing values, and unbalanced datasets before being used to deal with the imbalanced dataset. When the data has been preprocessed, it is then sent to the MAD Median-KS test method, which is used to extract features from the dataset. To categorize the data into attack and nonattack categories, the features are classified using the dual weight updation-based optimal deep belief network (DWU-ODBN) classification technique, which is explained in more detail below. According to the results of the experimental assessment, the proposed approach outperforms existing methods in terms of detecting intrusions and assaults. The proposed work achieves 77 seconds to achieve the attack detection with an accuracy rate of 98.1%.
In the microarray gene expression data, there are a large number of genes that are expressed at varying levels of expression. Given that there are only a few critically significant genes, it is challenging to analyze and categorize datasets that span the whole gene space. In order to aid in the diagnosis of cancer disease and, as a consequence, the suggestion of individualized treatment, the discovery of biomarker genes is essential. Starting with a large pool of candidates, the parallelized minimal redundancy and maximum relevance ensemble (mRMRe) is used to choose the top m informative genes from a huge pool of candidates. A Genetic Algorithm (GA) is used to heuristically compute the ideal set of genes by applying the Mahalanobis Distance (MD) as a distance metric. Once the genes have been identified, they are input into the GA. It is used as a classifier to four microarray datasets using the approved approach (mRMRe-GA), with the Support Vector Machine (SVM) serving as the classification basis. Leave-One-Out-Cross-Validation (LOOCV) is a cross-validation technique for assessing the performance of a classifier. It is now being investigated if the proposed mRMRe-GA strategy can be compared to other approaches. It has been shown that the proposed mRMRe-GA approach enhances classification accuracy while employing less genetic material than previous methods. Microarray, Gene Expression Data, GA, Feature Selection, SVM, and Cancer Classification are some of the terms used in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.