Type Ia supernovae, calibrated by classical distance ladder methods, can be used, in conjunction with galaxy survey two-point correlation functions, to empirically determine the size of the sound horizon r s. Assumption of the ΛCDM model, together with data to constrain its parameters, can also be used to determine the size of the sound horizon. Using a variety of cosmic microwave background (CMB) data sets to constrain ΛCDM parameters, we find the model-based sound horizon to be larger than the empirically determined one with a statistical significance of between 2σ and 3σ, depending on the data set. If reconciliation requires a change to the cosmological model, we argue that change is likely to be important in the two decades of scale factor evolution prior to recombination. Future CMB observations will therefore likely be able to test any such adjustments; e.g., a third-generation CMB survey like SPT-3G can achieve a threefold improvement in the constraints on r s in the ΛCDM model extended to allow additional light degrees of freedom.
Using the South Pole Telescope (SPT), we have discovered the most massive known galaxy cluster at z > 1, SPT-CL J2106-5844. In addition to producing a strong Sunyaev-Zel'dovich (SZ) effect signal, this system is a luminous X-ray source and its numerous constituent galaxies display spatial and color clustering, all indicating the presence of a massive galaxy cluster. Very Large Telescope and Magellan spectroscopy of 18 member galaxies shows that the cluster is at z = 1.132 +0.002 −0.003 . Chandra observations obtained through a combined HRC-ACIS GTO program reveal an X-ray spectrum with an Fe K line redshifted by z = 1.18 ± 0.03. These redshifts are consistent with the galaxy colors found in optical, near-infrared, and mid-infrared imaging. SPT-CL J2106-5844 displays extreme X-ray properties for a cluster having a core-excluded temperature of T X = 11.0 +2.6 −1.9 keV and a luminosity (within r 500 ) of L X (0.5-2.0 keV) = (13.9±1.0)×10 44 erg s −1 . The combined mass estimate from measurements of the SZ effect and X-ray data is M 200 = (1.27±0.21)×10 15 h −1 70 M . The discovery of such a massive gravitationally collapsed system at high redshift provides an interesting laboratory for galaxy formation and evolution, and is a probe of extreme perturbations of the primordial matter density field. We discuss the latter, determining that, under the assumption of ΛCDM cosmology with only Gaussian perturbations, there is only a 7% chance of finding a galaxy cluster similar to SPT-CL J2106-5844 in the 2500 deg 2 SPT survey region and that only one such galaxy cluster is expected in the entire sky.
We present the results of the ground-and space-based optical and near-infrared (NIR) follow-up of 224 galaxy cluster candidates detected with the Sunyaev-Zel'dovich (SZ) effect in the 720 deg 2 of the South Pole Telescope (SPT) survey completed in the 2008 and 2009 observing seasons. We use the optical/NIR data to establish whether each candidate is associated with an overdensity of galaxies and to estimate the cluster redshift. Most photometric redshifts are derived through a combination of three different cluster redshift estimators using red-sequence galaxies, resulting in an accuracy of Δz/(1 + z) = 0.017, determined through comparison with a subsample of 57 clusters for which we have spectroscopic redshifts. We successfully measure redshifts for 158 systems and present redshift lower limits for the remaining candidates. The redshift distribution of the confirmed clusters extends to z = 1.35 with a median of z med = 0.57. Approximately 18% of the sample with measured redshifts lies at z > 0.8. We estimate a lower limit to the purity of this SPT SZ-selected sample by assuming that all unconfirmed clusters are noise fluctuations in the SPT data. We show that the cumulative purity at detection significance ξ > 5(ξ > 4.5) is 95% (70%). We present the red brightest cluster galaxy (rBCG) positions for the sample and examine the offsets between the SPT candidate position and the rBCG. The radial distribution of offsets is similar to that seen in
We report the spectroscopic confirmation of SPT-CL J0546-5345 at z = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z > 1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179 +232 −167 km/s, ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z > 1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M 200 = 1.0 +0.6 −0.4 × 10 15 M ⊙ , in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M 200 = (7.95 ± 0.92) × 10 14 M ⊙ . The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high redshift SZE-selected galaxy cluster era.
We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg 2 area surveyed by the South Pole Telescope in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R 200 radii and M 200 masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z > 1. Redshifts inferred from mean red-sequence colors exhibit 2% RMS scatter in σ z /(1 + z) with respect to the spectroscopic subsample for z < 1. We show that M 200 cluster masses derived from optical richness correlate with masses derived from South Pole Telescope data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large Sunyaev-Zel'dovich surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.