Pseudomonas sp. 14-3, a strain that accumulates large quantities of polyhydroxybutyrate (PHB) when grown on octanoate, was isolated from Antarctic environments. This isolate was characterized on the basis of phenotypic features and partial sequencing of its 16S ribosomal RNA gene. Pseudomonas sp. 14-3 showed increased tolerance to both thermal and oxidative stress compared with three other Pseudomonas species. Stress tolerance of Pseudomonas sp. 14-3 was analyzed in polyhydroxyalkanoate accumulating and non-accumulating conditions, and increased levels of stress resistance were observed when PHB was produced. Pseudomonas sp. 14-3 was isolated from Antarctic regions, a habitat normally exposed to extreme conditions. An association between high PHB accumulation and high stress resistance in bacteria adapted to extreme environments is suggested.
We assessed the effects of different arcA mutations on poly(3-hydroxybutyrate) (PHB) synthesis in recombinant Escherichia coli strains carrying the pha synthesis genes from Azotobacter sp. strain FA8. The arcA mutations used were an internal deletion and the arcA2 allele, a leaky mutation for some of the characteristics of the Arc phenotype which confers high respiratory capacity. PHB synthesis was not detected in the wild-type strain in shaken flask cultures under low-oxygen conditions, while ArcA mutants gave rise to polymer accumulation of up to 24% of their cell dry weight. When grown under microaerobic conditions in a bioreactor, the arcA deletion mutant reached a PHB content of 27% ؎ 2%. Under the same conditions, higher biomass and PHB concentrations were observed for the strain bearing the arcA2 allele, resulting in a PHB content of 35% ؎ 3%. This strain grew in a simple medium at a specific growth rate of 0.69 ؎ 0.07 h ؊1 , whereas the deletion mutant needed several nutritional additives and showed a specific growth rate of 0.56 ؎ 0.06 h ؊1 . The results presented here suggest that arcA mutations could play a role in heterologous PHB synthesis in microaerobiosis.
The production of black pigments in bacteria was discovered more than a century ago and related to tyrosine metabolism. However, their diverse biological roles and the control of melanin synthesis in different bacteria have only recently been investigated. The broad distribution of these pigments suggests that they have an important role in a variety of organisms. Melanins protect microorganisms from many environmental stress conditions, ranging from ultraviolet radiation and toxic heavy metals to oxidative stress. Melanins can also affect bacterial interactions with other organisms and are important in pathogenesis and survival in many environments. Bacteria produce several types of melanin through dedicated pathways or as a result of enzymatic imbalances in altered metabolic routes. The control of the melanin synthesis in bacteria involves metabolic and transcriptional regulation, but many aspects remain still largely unknown. The diverse properties of melanins have spurred a large number of applications, and recent efforts have been done to produce the pigment at biotechnologically relevant scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.