Laser-dressed absorption in atomic helium is studied, both theoretically and experimentally, by transient absorption spectroscopy using isolated 400-as pulses centered at 22 eV and 12-fs near-infrared (NIR) pulses with 780-nm central wavelength. Multiple features in the helium singly excited bound-state spectrum are observed only when the NIR and attosecond pulses are overlapped in time. Theoretical analysis indicates that these light-induced structures (LISs) are the intermediate states in resonant, second-order processes that transfer population to multiple dipole forbidden states. The use of broadband, coherent extreme ultraviolet (XUV) radiation allows observation of these LISs without specifically tuning to a two-photon resonance, as would be required with narrowband XUV light. The strength and position of the LISs depend strongly on the NIR intensity and the pump-probe delay.
The decay of highly excited states of xenon after absorption of extreme ultraviolet light is directly tracked via attosecond transient absorption spectroscopy using a time-delayed near-infrared perturbing pulse. The lifetimes of the autoionizing 5s5p 6 6p and 5s5p 6 7p channels are determined to be (21.9 ± 1.3) fs and (48.4 ± 5.0) fs, respectively. The observed values support lifetime estimates obtained by traditional linewidth measurements. The experiment additionally obtains the temporal evolution of the decay as a function of energy detuning from the resonance center, and a quantum mechanical formalism is introduced that correctly accounts for the observed energy dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.