Bean (Phaseolus vulgaris L.) seedlings were subjected to varying selenium levels (1, 2, 4, and 6 ppm) in a hydroponic culture. The germination reached 100% in 48 h in all Se levels except 6 ppm, where it took 72 h. The root and shoot growth was stimulated at 1 and 2 ppm Se levels that was commensurate with increase in chlorophyll content, leaf water content, and cellular respiration. At 4 and 6 ppm Se levels, the growth was inhibited appreciably, which was associated with increase in stress injury measured as damage to membranes and decrease in cellular respiration, chlorophyll, and leaf water content. The oxidative injury as elevation of lipid peroxidation was larger compared to hydrogen peroxide accompanied by reduced levels of enzymatic (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic (ascorbic acid and glutathione) antioxidants. Proline content was significantly higher at 1 and 2 ppm Se but diminished considerably at 4 and 6 ppm levels concomitant with the reduced growth. Exogenous application of proline (50 µM) resulted in substantiation of its endogenous levels that antagonised the toxic effects of Se by improving the growth of seedlings. The stress injury was reduced significantly with simultaneous increase in enzymatic and non-enzymatic antioxidants. Especially the components of ascorbate-glutathione cycle showed larger stimulation with proline application. The role of proline in mitigating the toxic effects of Se is discussed.
Purpose: Many medicinal plants have been employed during ages to treat urinary stones though the rationale behind their use is not well established. Thus, the present study was proposed to evaluate the effect of coconut water as a prophylactic agent in experimentally induced nephrolithiasis in a rat model. Materials and Methods:The male Wistar rats were divided randomly into three groups. Animals of group I (control) were fed standard rat diet. In group II, the animals were administrated 0.75% ethylene glycol in drinking water for the induction of nephrolithiasis. Group III animals were administrated coconut water in addition to ethylene glycol. All the treatments were continued for a total duration of seven weeks. Results and Conclusion: Treatment with coconut water inhibited crystal deposition in renal tissue as well as reduced the number of crystals in urine. Furthermore, coconut water also protected against impaired renal function and development of oxidative stress in the kidneys. The results indicate that coconut water could be a potential candidate for phytotherapy against urolithiasis.
The present study was aimed at studying the effect of Tribulus terrestris on different parameters of oxidative stress and gene expression profiles of antioxidant enzymes in renal tissues of male wistar rats after induction of hyperoxaluria. The animals were divided into three groups. The animals in group I (control) were administered vehicle only. In group II, the animals were treated with ethylene glycol (hyperoxaluric agent) and those in group III were administered T. terrestris plant extract in addition to ethylene glycol. All treatments were continued for a period of seven weeks. Ethylene glycol feeding resulted in hyperoxaluria as well as increased excretion of calcium and phosphate. Serum creatinine, uric acid and blood urea nitrogen levels were also altered in hyperoxaluric animals. Various oxidative stress parameters viz. lipid peroxidation and activity of antioxidant enzymes were used to confirm the peroxidant state. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to confirm whether steady-state transcription level of different antioxidant enzymes was altered. T. terrestris significantly reduced the excretion of oxalate, calcium, and phosphate along with decreased levels of blood urea nitrogen, uric acid and creatinine in serum. T. terrestris also reduced hyperoxaluria- caused oxidative stress, and restored antioxidant enzyme activity and their expression profile in kidney tissue. Histological analysis depicted that T. terrestris treatment decreased renal epithelial damage, inflammation, and restored normal glomerular morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.