In this study, dissimilar joints of AA5083-H116 and AA7075-T6 aluminum alloys were successfully made by friction stir welding technique. The microstructure and mechanical behavior of the welded joints were investigated at different rotational and traverse speeds. A mathematical modeling was developed to demonstrate a relationship between the friction stir welding parameters and the ultimate tensile strength of the dissimilar joints. Then, the mathematical modeling was optimized by genetic algorithm in order to find the optimum condition in which the maximum tensile strength of welded joints can be achieved. Eventually, genetic algorithm results confirmed that the maximum tensile strength of welded joints is achievable in rotational and traverse speeds of 500 r/min and 50 mm/min, respectively. The maximum error between experimental data and predicted model was less than 1%.
In this paper, the material behaviour and mechanical characteristics of lap joint friction stir welding (FSW) between dissimilar alloys, namely, Cu and Al, is investigated. In order to produce welds of a higher quality, a layer of Cu is anodised on the aluminium alloy. The mechanical and the microstructural characterisations are performed on the welds, which are produced using various welding parameters. Scanning electron microscope with energy dispersive X-ray spectroscopy is used to identify the elemental compositions of phases that are formed. The results reveal that the use of the copper anodised layer prevented formation of brittle intermetallic compounds due to the direct FSW of 6061 aluminium alloy to copper and, as a result, enhanced the weld metallurgical and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.