[1] The outer zone radiation belt consists of energetic electrons drifting in closed orbits encircling the Earth between $3 and 7 R E . Electron fluxes in the outer belt show a strong correlation with solar and magnetospheric activity, generally increasing during geomagnetic storms with associated high solar wind speeds, and increasing in the presence of magnetospheric ULF waves in the Pc-5 frequency range. In this paper, we examine the influence of Pc-5 ULF waves on energetic electrons drifting in an asymmetric, compressed dipole and find that such particles may be efficiently accelerated through a drift-resonant interaction with the waves. We find that the efficiency of this acceleration increases with increasing magnetospheric distortion (such as may be attributed to increased solar wind pressure associated with high solar wind speeds) and with increasing ULF wave activity. A preponderance of ULF power in the dawn and dusk flanks is shown to be consistent with the proposed acceleration mechanism. Under a continuum of wave modes and frequencies, we find that the drift resonant acceleration process leads to additional modes of radial diffusion in the outer belts, with timescales that may be appropriate to those observed during geomagnetic storms.
The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the "highest quality" events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).
Abstract. There has been increasing evidence that Pc-5 ULF oscillations play a fundamental role in the dynamics of outer zone electrons. In this work we examine the adiabatic response of electrons to toroidal-mode Pc-5 field line resonances using a simplified magnetic field model. We find that electrons can be adiabatically accelerated through a drift-resonant interaction with the waves, and present expressions describing the resonance condition and half-width for resonant interaction. The presence of magnetospheric convection electric fields is seen to increase the rate of resonant energization, and allow bulk acceleration of radiation belt electrons. Conditions leading to the greatest rate of acceleration in the proposed mechanism, a nonaxisymmetric magnetic field, superimposed toroidal oscillations, and strong convection electric fields, are likely to prevail during storms associated with high solar wind speeds.
The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt elec-
We model the rapid (∼ 1 min) formation of a new electron radiation belt at L ≃ 2.5 that resulted from the Storm Sudden Commencement (SSC) of March 24, 1991 as observed by the CRRES satellite. Guided by the observed electric and magnetic fields, we represent the time‐dependent magnetospheric electric field during the SSC by an asymmetric bipolar pulse that is associated with the compression and relaxation of the Earth's magnetic field. We follow the electrons using a relativistic guiding center code. The test‐particle simulations show that electrons with energies of a few MeV at L > 6 were energized up to 40 MeV and transported to L ≃ 2.5 during a fraction of their drift period. The energization process conserves the first adiabatic invariant and is enhanced due to resonance of the electron drift motion with the time‐varying electric field. Our simulation results, with an initial W−8 energy flux spectra, reproduce the observed electron drift echoes and show that the interplanetary shock impacted the magnetosphere between 1500 and 1800 MLT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.