Model compounds that structurally mimic the hydrogen-producing active site of [FeFe]-hydrogenases have been studied to explore potential ground-state electronic structure effects on reaction mechanisms compared to hexacarbonyl derivatives. The time-dependent behavior of Fe2(μ-S2C3H6)(CO)4(PMe)2 (A) in room temperature n-heptane and acetonitrile solutions was examined using various ultrafast UV and visible excitation pulses with broadband IR-probe spectroscopy of the carbonyl (CO) stretching region. Ground- and excited-state electronic and CO-stretching mode vibrational properties of the possible isomers of A were also examined using density functional theory (DFT) computations. In n-heptane, 355 and 532 nm excitation resulted in short-lived (135 ± 74 ps) bands assigned to excited-state, CO-loss photoproducts. These bands decay away, forming new long-lived absorptions that are likely a mixture of isomers of both three-CO and four-CO ground-state isomers. These new bands grow in with a time scale of 214 ± 119 ps and persist for more than 100 ns. In acetonitrile, similar results are seen with a 532 nm pump, but the 355 nm data lack evidence of the longer-lived bands. In either solvent, the 266 nm pump data seem to also lack longer-lived bands, but the intensities are significantly lower in this data, making firm conclusions more difficult. We suggest that these wavelength-dependent excitation dynamics significantly alter potential mechanisms and efficiencies for light-driven catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.