The purpose of this study was to establish if there are gender differences in muscle architecture in relaxed human soleus and gastrocnemius muscles of normal, live subjects. Ultrasonography was used to measure fiber bundle length, muscle thickness, and angles of pennation in a total of ten predetermined sites in the medial and lateral heads of gastrocnemius and the anterior and posterior soleus in 19 males and 16 females. Percentage differences between males and females for each parameter were recorded. Gender differences were statistically analyzed using multivariate analysis of variance. In the gastrocnemius and soleus muscles of males and females the differences between the overall fiber bundle length, angle of pennation and muscle thickness were statistically significant (P < 0.05). Overall, females were found to have longer average muscle fiber bundle length and males thicker muscles and larger angles of pennation. The greatest percentage differences of the architectural parameters between males and females were in the posterior soleus: 13% difference in fiber length and 26% difference in angle of pennation in the midline of posterior soleus and 26% difference in muscle thickness of the lateral part of posterior soleus. No correlation was found between leg length and fiber length, angle of pennation or muscle thickness. Fiber length (decreased), angle of pennation (greater) and muscle thickness (greater) of most parts of the gastrocnemius and soleus muscles were significantly different in males and females. Leg length of males and females did not correlate to these architectural parameters.
The purpose of this study was to document and compare the architectural parameters (fibre bundle length, angle of pennation) of human skeletal muscle in cadaveric specimens and live subjects. The medial (MG) and lateral (LG) gastrocnemius, and posterior (PS) and anterior (AS) soleus were examined bilaterally in 5 cadavers (mean age 72n6, range 65-83 y) and 9 live subjects (mean age 76n3, range 70-92 y). Data were obtained from direct measurement of cadaveric specimens and from ultrasonographic scans of the live subjects. In cadaveric muscle, fibre bundles were isolated ; their length was measured in millimetres and pennation angles were recorded in degrees. In live muscle, similar measurements were taken from ultrasonographic scans of relaxed and contracted muscle. For the scans of relaxed muscle, subjects were positioned prone with the foot at a 90m angle to the leg, and for scans of contracted muscle, subjects were asked to sustain full plantarflexion during the scanning process. Fibre bundle length and angle of pennation were compared at matched locations in both groups. It was found that the relationship between cadaveric and in vivo values for fibre length and angle of pennation varied between muscle parts. The cadaveric architectural parameters did not tend to lie consistently towards either extreme of relaxation or contraction. Rather, within MG, PS and AS, cadaveric fibre bundle lengths lay between those for relaxed and contracted in vivo muscle. Similarly both the anterior and posterior cadaveric fibre angles of pennation lay between the in vivo values within LG and PS. In summary, architectural characteristics of cadaveric muscle differ from both relaxed and contracted in vivo muscle. Therefore, when developing models of skeletal muscle based on cadaveric studies, the architectural differences between live and cadaveric tissue should be taken into consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.