Ground ice in the crust and soil may be one of the largest reservoirs of water on Mars. Near-surface ground ice is predicted to be stable at latitudes higher than 40 degrees (ref. 4), where a number of geomorphologic features indicative of viscous creep and hence ground ice have been observed. Mid-latitude soils have also been implicated as a water-ice reservoir, the capacity of which is predicted to vary on a 100,000-year timescale owing to orbitally driven variations in climate. It is uncertain, however, whether near-surface ground ice currently exists at these latitudes, and how it is changing with time. Here we report observational evidence for a mid-latitude reservoir of near-surface water ice occupying the pore space of soils. The thickness of the ice-occupied soil reservoir (1-10 m) and its distribution in the 30 degrees to 60 degrees latitude bands indicate a reservoir of (1.5-6.0) x 104 km3, equivalent to a global layer of water 10-40 cm thick. We infer that the reservoir was created during the last phase of high orbital obliquity less than 100,000 years ago, and is now being diminished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.