A numerical study is carried out for two dimensional steady incompressible mixed convective flow of electrically conductive micro nanofluid in a stretchable channel. The flow is generated due to the stretching walls of the channel immersed in a porous medium. The magnetic field is applied perpendicular to the walls. The impact of radiation, viscous dissipation, thermophoretic and Brownian motion of nanoparticles appear in the energy equation. A numerical technique based on Runge-Kutta-Fehlberg fourth-fifth order (RFK45) method is used to express the solutions of velocity, microrotation, temperature and concentration fields. The dimensionless physical parameters are discussed both in tabular and graphical forms. The results are also found in a good agreement with previously published literature work.
An incompressible, electrically conducting, bioconvective micropolar fluid flow between two stretchable disks is inspected. Modification versions of Fourier and Fick’s law are accounted through Cattaneo–Christov heat–mass theories. The nanofluid Buongiorno model is also utilized in constitutive equations. The influence of gyrotactic microorganism is also accounted through bioconvection. Similarity variables transform the fluid model into system of ordinary differential equations. The resultant model is then solved through bvp4c method. Results in pictorial and tabular ways are accomplished. It is found that stretching Reynolds number and magnetic parameter slows down the radial velocity at center of the plane. Motile microorganism field is reduced by Peclet number. Micropolar parameters can be useful in the enhancement of couple stresses and in reduction of shear stresses. A comparison is also elaborated with published work under limiting scenario for the validation of numerical scheme accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.