We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding 2 orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO(2) substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.
An optical study of NdNiO(3) ultrathin films with insulating and metallic ground states reveals new aspects of the insulator-to-metal transition that point to Mott physics as the driving force. In contrast with the behavior of charge-ordered systems, we find that the emergence of the Drude resonance across the transition is linked to a spectral weight transfer over an energy range of the order of the Coulomb repulsion U, as the energy gap is filled with states instead of closing continuously.
An optical study of fully strained ultrathin LaNiO3 films is presented and compared with LDA+DMFT calculations. LaNiO3 films were grown by pulsed laser deposition on LaAlO3 and SrTiO3 substrates which provide compressive and tensile strain, respectively. Optical conductivity data show a Drude peak with a spectral weight that is significantly reduced compared to that obtained from LDA calculations. The extended Drude analysis reveals the presence of a pseudogap around 80 meV for the film on SrTiO3 and near 40 meV, at low temperature only, for the film on LAO. An unusual temperature dependence of the optical conductivity is observed, with the Drude plasma frequency increasing by up to 20% at low temperature due to spectral weight transfer from bands lying 2-4 eV below the Fermi energy. Such a strong temperature dependence of the Drude spectral weight has previously been reported for correlated electron systems in which a phase transition is present. In LNO however, no phase transition is observed.
The optical properties of V 2 O 3 thin films are investigated across the insulator-to-metal transition and in the metallic state. The spectral weight transfer observed across the transition, over an energy scale of 5 eV, is consistent with the Mott-Hubbard model for correlated electron systems. In the metallic phase, a strong Drude peak is observed, which exhibits a pronounced temperature dependence related to the transfer of states from the Hubbard bands to the quasiparticle peaks as the temperature is reduced. The analysis of the far-infrared spectra reveals signatures of strong electronic correlations in V 2 O 3. Finally, a comparison to VO 2 data is presented.
The optical properties of LaNiO3 thin films are investigated over a wide energy and temperature range. Thin films of varying thickness were epitaxially grown by pulsed laser deposition on LaAlO3 and SrTiO3 substrates. The optical conductivity data of the films reveal a number of interband transitions above 1 eV which are in good agreement with band structure calculations. No well defined Drude peak is observed however, in stark contrast with LDA theory predicting a finite density of states at the Fermi energy. This experimental finding of a vanishing Drude spectral weight, compared to a finite electron kinetic energy obtained from band structure calculations, highlights the importance of strong electronic correlations in LaNiO3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.